B 1

2011 PHYSICS (Optional) (Paper – II)

520031

Standard : Degree Total Marks : 200
Nature : Conventional (Essay) type Duration : Three hours

- N.B.: 1) Answers must be written in English.
 - 2) Question No. 1 is compulsory. Of the remaining questions, attempt any Four selecting one question from each Section.
 - 3) Figures to the RIGHT indicate marks of the respective question.
 - 4) Make suitable assumptions, wherever be necessary and state the same.
 - 5) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
 - 6) Credit will be given for orderly, concise and effective writing.
 - 7) Candidates should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.

1. Answer any four of the following:

Marks

10

10

10

- (a) A point charge q is placed at a distance b from the centre of two concentric earthed conducting sphere of radii a and c, a < b < c. Find the potential at a point P for a < r < b.
- (b) What is a blackbody? Draw the experimental curves of the blackbody radiation for different temperature. Discuss how classical approaches failed to account for the sperical distribution of energy density in a blackbody radiation.
- (c) What do you mean by Einstein's A, B coefficients? Show that the ratio:
 - $\frac{\text{Anm}}{\text{Bnm}} = \frac{8\pi h v^3}{c^3}$, the symbols used having their usual significance.
- (d) Write a note on near earth orbiting satellites.
- (e) Explain the following:
 - (i) Geostationary and, 5
 - (ii) Use of GPS in communication. 5

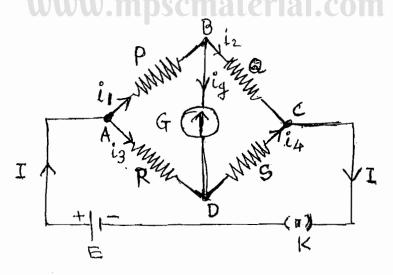
P.T.O.

2. Answer the following sub-questions.

- 180056 Prove that, the scalar potential, $\phi(x) = \int \frac{\rho(x')}{|x-x'|} d^3 x'$, satisfies Poisson's equation.
 - 10_.

9

6


9

- (b) (i) State Faraday's law of e.m. induction and derive the differential form of Faraday's law of electromagnetic induction.
 - (ii) What are self and mutual inductions? Define their coefficients and state its unit.
- (c) (i) Write down Maxwell's equations in electromagnetic theory. Explain the physical significance of each of them.
 - (ii) Prove that the velocity (v) of an e.m. wave in a medium of permeability (μ), permittivity (t) and conductivity (σ) = 0 (zero), is given by $v = \sqrt{1/\mu t}$.
- 3. Answer the following sub-questions.
 - (a) A dipole P is located in an external electrostatic field. Derive an expression for the torque acting at that point P.
- 10

6

9

- (b) (i) State and explain Kirchhoff's current and voltage law.
 - (ii) Using Kirchhoff's law, deduce the balance condition of Wheatstone bridge. 9

- (c) (i) What is Poynting vector? What does it represent? State and prove Poynting theorem.
 - (ii) Show that the average value of Poynting vector is given by,

$$\left(\vec{S}\right) = \frac{\vec{E}_0}{\sqrt{2}} \times \frac{\vec{H}_0}{\sqrt{2}} = \vec{E}_{rms} \times \vec{H}_{rms} = \frac{1}{2} \left(\vec{E}_0 \times \vec{H}_0\right)$$

SECTION - B

Marks

4.	Answer the following sub-questions.			
. ,		hyp	te de Broglie hypothesis and explain the various facts which led to this othesis. Derive an expression for de Broglie wavelength of a moving tical.	10
	(b)	(i)	What is harmonic oscillator? Obtain an expression for potential energy of a classical harmonic oscillator.	9
		(ii)	Obtain dimensionless form of Schrodinger's time independent equation for harmonic oscillator.	6
	(c)	(i)	Write the Schrodinger's equation in sperical co-ordinate for hydrogen atom. State the eigen function and eigen values.	6
		(ii)	Show that the energy level in hydrogen atom are n ² fold degenerate.	9
5 .	Answer the following sub-questions.			
	(a)	(i)	State and prove Heisenberg's uncertainty principle.	5
		(ii)	Calculate the minimum uncertainty in the velocity of an electron, when it is confined to a box of length 10^{-8} m. If the mass of electron, $m_e = 9 \times 10^{-31}$ kg.	.s 5
	(b)	(i)	What is an operator? Obtain operators for energy and momentom.	9
		(ii)	Find an operator for the function a $\cos 4x$, so that (-16) is the eigen value of an operator, where a is a constant.	f 6
	(c)	(i)	Explain orbital angular momentom of an electron.	6
		(ii)	State four quantum numbers of an electron and explain their significance.	9
			SECTION – C	
6.	Answer the following sub-questions.			
	(a)	a) Describe Stern Gerlach experiment and explain its significance.		10
	(b)	•		10
	(c)	What are the nuclear forces? State the characteristics of nuclear forces.		10
	(d)			10
7.	Answer the following sub-questions.			
	(a)	Sta (i) (ii)	te Bohr's postulates and use them to determine the expression for, radius of Bohr's orbit and total energy of electron in a hydrogen atom in the n th state.	10
	(b) ,	Wh	at is non-rigid rotator? Draw energy level diagram of rigid and non-rigid ator and state the importance of dissociation constant D.	10

(c)

Write short notes on,

semiconductor at 0°K.

MOSFET.

 $E_{F} = \frac{E_{c} + E_{v}}{2} + \frac{3}{4} KT \log_{e} \left(\frac{m_{h}}{m_{c}}\right).$

Distinguish between BJT, JFET and MOSFET.

(ii)

(c)

Binding energy and, nuclear magnetic moment.

Marks

5

4

6

6

9

Calculate the binding energy of α -partical in MeV. Given that, $m_p = 1.00758$ amu, $m_n = 1.00897$ amu, $m_{He} = 4.0028$ amu and 1 amu = 931.49 MeV.5 (d) What is Nuclear Fission? Explain the various stages in Fission process as given by the liquid drop model. 10 SECTION - D **8.** Answer the following sub-questions. Write short notes on, (a) 6 (1) Unit cell and primitive cell, and (2) Millar indices: In a cubic system, show that the distance between (hkl) planes is given by, $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$. 9 (b) What is doping? Explain N-type semiconductor. Draw energy level diagram for N-type material. 10 Explain the fabrication of metal-semiconductor junction diode. Give its (c) name and symbol. 6 What is rectifier? Explain the use of a p-n junction diode as a half wave rectifier. Draw input and output waveform. Show that the ripple factor of HWR is 1.21. 9 **9.** Answer the following sub-questions. (a) Distinguish between, diamagnetic, paramagnetic and ferromagnetic substances. 6 Obtain the expression for magnetic susceptibility of a diamagnetic substance. 9 (b) What is intrinsic semiconductor? Draw energy band diagram for intrinsic

Show that for an intrinsic semiconductor, the fermi level is given by

Explain the working of N-channel deplesion MOSFET using neat circuit diagram. Draw a set of static drain characteristics for N-channel deplesion

