2011

MATHEMATICS (Optional) Paper – II

340041

Standard : Degree Nature : Conventional (Essay) type Total Marks: 200

Duration : Three hours

N.B.: 1) Answers must be written in English.

- 2) Question No. 1 is compulsory. Of the remaining questions, attempt any Four selecting one question from each section.
- 3) Figures to the RIGHT indicate marks of the respective question.
- 4) Use of log table, Non-Programmable calculator is permitted, but any other Table/Code/Reference book are not permitted.
- 5) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
- 6) Credit will be given for orderly, concise and effective writing/presentation.
- 7) Candidates should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.

Marks

Answer any four of the following (10 marks each):

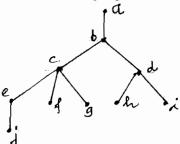
(40 Marks)

- 1. (a) Show that S_4 , the permutation group over 4 symbols has no element of order 6. 10
 - (b) State Cauchy residue theorem and evaluate $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 1}$.
 - (c) The ends of a laterally insulated rod of length 2 are kept at 0° C while the initial temperature at interior points u(x, 0) is given by

$$u(x, 0) = \sin \frac{\pi x}{2} + 3 \sin 5 \frac{\pi x}{2}$$
, $0 < x < 2$.

Determine the temperature in the bar at a distance x from one and at any subsequent time t; u(x, t).

(d) The following figure shows the tree with root at a



P.T.O.

10

15

15

10

15

15

15

T		
\mathbf{Deter}	mina	•
Derei	шпе	

•		n	0	R	C
1	₽	v	v	ľ	U

- (i) parents of c and h
- ii) children of d and e
- (iii) descendents of c and e
- (iv) siblings of f and h
- (v) leaves.
- (e) Show that every infinite bounded set of real numbers has at least one limit point.

SECTION - A

- 2. (a) Show that every homomorphic image of a group is isomorphic to some quotient group of G.
 - (b) Define principal ideal ring. Show that a polynomial ring over a field is a principal ideal ring.
 - (c) If K is an extension field of F, $a \in K$ is algebraic over F and p(x) is a minimal polynomial of a over F, then show that p(x) is irreducible over F.
- 3. (a) Show that quotient group of an abelian group is abelian but the converse is not true.
 - (b) Define Euclidean ring. Show that the ring of Gaussian integers is a Euclidean ring.
 - (c) If Q is the field of rational numbers, then show that $Q\left(\sqrt{2}, \sqrt{3}\right) = Q\left(\sqrt{2} + \sqrt{3}\right)$. 10

SECTION – B

- 4. (a) Suppose S is an ordered set with least upper bound property, $B \subset S$, B is not empty and B is bounded below. Let L be the set of all lower bounds of B. Then show that $\alpha = \sup L$ exists in S and $\alpha = \inf B$.
 - (b) Let Σ a_n be a series of real numbers which converges but not absolutely. Show that for any real α , there is a rearrangement Σ a'_n with partial sums a'_n such that $a'_n \to \alpha$.
 - (c) Show that the Cauchy Riemann equations are necessary conditions for a given function w = f(z) = u + iv defined in a region of complex plane to be analytic. 10
- 5. (a) Show that every continuous function from a compact metric space X into a metric space Y is uniformly continuous.
 - (b) If $\{f_n\}$ is a sequence of continuous functions on $E \subset IR$ and if $f_n \to f$ uniformly on E, then show that f is continuous on E.

Marks

If f(z) is analytic in a simply connected domain D bounded by contour C, then (c) show that for any z_0 in the interior of D, the following holds 10

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Marks

SECTION - C

Determine the general solution of the differential equation

15

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = e^x \cos 3x.$$

Compute $\frac{\partial z}{\partial y}$ and $\frac{\partial y}{\partial y}$ at (1, -1, 2) if $x^2 + y^2 + z^2 = 25$.

10

(c) Solve the partial differential equation 15

$$(y^2 + z^2) \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} + zx = 0.$$

7. (a) Determine the general solution of the differential equation

15

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = \sin^2 x.$$

Compute $\frac{d^2y}{dy^2}$ if $x^5 + y^5 - 5x^2 = 0$.

10

(c) Solve the partial differential equation 15

$$(x^2-y^2-yz)\frac{\partial z}{\partial x}+(x^2-y^2-zx)\frac{\partial z}{\partial y}=z(x-y).$$

SECTION - D

Use Newton-Raphson's method to determine the root of the equation $x^4 + x^3 - 7x^2 - x + 5 = 0$ which lies between 2 and 3 correct upto three decimal 8. (a)

10

(b) Use Gauss-Seidel method to solve the following system of equations 10

$$2x_1 - x_2 + 2x_3 = 3$$

$$x_1 + 3x_2 + 3x_3 = -1$$

$$x_1 + 2x_2 + 5x_3 = 1$$

Select $x_1 = 0.3$, $x_2 = -0.8$ and $x_3 = 0.3$ as the initial approximation.

P.T.O.

10 ·

10

10

10

Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's one-third rule. Use it to obtain the (c)

approximate value of π and find error in this calculated value. Select $h = \frac{1}{6}$.

Use simplex method to solve the following linear programming problem (d) Maximize $Z = 12x_1 + 15x_2 + 14x_3$, subject to the constraints

$$\begin{aligned} &-\mathbf{x}_{1}+\mathbf{x}_{2}\leq 0\\ &-\mathbf{x}_{2}+2\mathbf{x}_{3}\leq 0\\ &\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}\leq 100\\ &\text{and }\mathbf{x}_{1},\,\mathbf{x}_{2},\,\mathbf{x}_{3},\,\geq 0. \end{aligned}$$

- Determine the approximate value, correct to three places of decimals for the **9.** (a) equation $x^3 - 3x + 4 = 0$ by using the method of false position. Given that the root lies between -2 and -3.
 - Solve the following system of equations: 10 (b)

$$6\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} = 105$$

$$4\mathbf{x}_{1} + 8\mathbf{x}_{2} + 3\mathbf{x}_{3} = 155$$

$$5\mathbf{x}_{1} + 4\mathbf{x}_{2} - 10\mathbf{x}_{3} = 65$$
by using Gauss-Seidel method. Select $\mathbf{x}_{1} = \mathbf{x}_{2} = \mathbf{x}_{3} = 0$ as the initial

appoximation.

Evaluate $\int_{0}^{10} \frac{dx}{1+x}$ by using Simpson's one-third rule. Divide (2, 10) into eight (c)

equal parts. Use it to find the approximate value of $\log \left(\frac{11}{3}\right)$. Also, find the error in the value thus calculated.

Use Simplex method to solve the following linear programming problem: (d) Maximize $Z = 4x_1 + 3x_2 + 6x_3$, subject to the constraints 10

$$2x_{1} + 3x_{2} + 2x_{3} \le 440$$

$$4x_{1} + 3x_{3} \le 470$$

$$2x_{1} + 5x_{2} \le 430$$
and $x_{1}, x_{2}, x_{3} \ge 0$.