S

2011 MATHEMATICS (Optional) Paper – I

330041

Standard : Degree

Total Marks: 200

Nature: Conventional (Essay) type

Duration: Three hours

N.B.:

- 1) Answers must be written in English.
- 2) Question No. 1 is compulsory. Of the remaining questions, attempt any Four selecting one question from each Section.
- 3) Figures to the RIGHT indicate marks of the respective question.
- 4) Use of log table, Non-programmable calculator is permited, but any other Table / Code / Reference book are not permited.
- 5) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
- 6) Credit will be given for orderly, concise and effective writing / presentation.
- 7) Candidates should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.

1. Answer any four of the following:

Marks

10

- (a) If X_i and X_j are characteristic vectors corresponding to two distinct characteristic roots λ_i and λ_j respectively of a square matrix A of order n, show that X_i and X_j are always independent and are orthogonal if A is symmetric.
- (b) Show that $\int_{0}^{\pi/2} x^{m} \csc^{n} x dx$. (exists if and only if n < (m+1)
- (c) Let $Y : \mathbb{R} \to \mathbb{R}^3$ be given by $Y(t) = (2 \cos 3t, 2 \sin 3t, 6t)$. Prove that Y(t) lies on a cylinder. Sketch Y(t), and $\dot{Y}(t)$. In which direction does $\dot{Y}(t)$ point?
- (d) A wheel is rolling on a horizontal plane with its axis parallel to the plane.

 Give a set of generalised coordinates to describe this system. What are the constraints on this system?
- (e) State the condition that a non-vertical line y = mx + c is an asymptote to a curve f(x,y) = 0. Determine all the asymptotes of the cubic curve $x^3 x^2y + xy^2 y^3 + 2x^2 + 8xy 5y^2 + 2x + 7y = 0$.

P.T.O.

10

the figure of the control of the con

Marks

10

10

10

10

330041

SECTION - A

- 2. (a) Determine the dimension of the vector space $V = \{(x, y, z) \in \mathbb{R}^3 | x y + z = 0, 2x + 5z = 0\}.$
 - (b) Find non-singular matrices P and Q such that PAQ is in the normal form where

$$A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$
 and hence determine the rank of A. 10

- (c) Show that eigenvalues of a Hermitian matrix are real.
- (d) Define real quadratic form. Find rank, index and signature of the quadratic form $q(x, y, z) = x^2 + 2y^2 + 2z^2 2xy 4yz + 2zx$. Hence determine whether q(x, y, z) is positive definite-or negative definite or positive semi-definite or negative semi-definite.
- 3. (a) Define sum of subspaces of a vector space. Show that if S_1 and S_2 are two sub-spaces of a vector space V, then $S_1 + S_2$ is the smallest sub-space of V containing S_1 and S_2 . 10
 - (b) Define congruent matrix. Show that the congruence relation on the set of all nxn matrices is an equivalence relation.
 - (c) Investigate for what real values of λ and μ the simultaneous equations x + y + 2z = 3, x + 2y + 3z = 5, $x + 2y + \lambda z = \mu$ have
 - (i) no solution
 - (ii) unique solution
 - (iii) infinite number of solutions.

(d) If A be a real skew -symmetric matrix of order n, show that (I + A) is non-singular and $(I + A)^{-1} (I - A)$ is orthogonal.

SECTION - B

4. (a) State and prove Rolle's theorem.

Let
$$f(x) =$$

$$\begin{cases} 2 \text{ for } 0 \le x < 2 \\ 4 \text{ for } 2 \le x \le 4 \end{cases}$$

Show that f(x) satisfies none of the conditions of Rolle's theorem, yet f'(x) = 0 for many points in [0, 4].

ATD

			_	
М	2	r	k	C

(b) Define stationary point of the function F(x, y). Determine absolute maximum and minimum of F(x, y) = 4x + 3y, given that $x^2 + y^2 \le 4$.

3

- (c) Find the area of the loop of the curve $x^3 + y^3 = 3axy$ where a is a constant. 10
- 5. (a) Show that limit of a real valued function is unique, if it exists. Prove that $f(x) = x \tan^{-1} \left(\frac{1}{x}\right) \text{ for } x \neq 0 \text{ and } f(0) = 0 \text{ is continuous but not differentiable at}$ x = 0.
 - (b) If functions u, v, w of independent variables x, y, z are not independent, show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 0$. Let $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$. Find $\frac{\partial(u,v)}{\partial(x,y)}$, if $xy \neq 1$. State whether u and v are functionally related. If so, find the relationship.
 - (c) Find the volume generated by revolution of the curve $y = \frac{a^3}{a^2 + x^2}$ about its asymptote, a is a constant.

SECTION - C

- 6. (a) Describe the spherical polar coordinates (r, θ, ϕ) in three dimensions. Draw the sets
 - (i) r = 1; (ii) $\theta = 1$ (iii) $\phi = 1$.
 - (b) Find the equation of a plane in \mathbb{R}^3 passing through the points $a_1 = (1, 2, 3)$ $a_2 = (4, 5, 6)$ and $a_3 = (1, 1, 1)$.
 - (c) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = x^2 + 2y^2 + 3z^2$. 15
 - (i) Draw the level sets f(x, y, z) = c, for c = 2, 3, 7.
 - (ii) Find grad f (1, 2, 3).
 - (iii) Prove that grad f(1, 2, 3) is the direction in which f is increasing most rapidly.
- 7. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = \exp(-x^2)$.
 - (i) Find the local extrema, regions of monotonicity and convexity.
 - (ii) Draw the graph of f.
 - (iii) Sketch the set $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = \exp(-x^2 y^2)\}.$
 - (b) Find an equation which represents a right circular cone with vertex angle $\frac{\pi}{2}$.
 - (c) Write down a vector field F in the plane such that F(0, 0) = (0, 0) and F(a, b) is tangent to the circle $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = a^2 + b^2\}$ at (a, b) and which points in the anticlockwise direction.

P.T.O.

Marks

SECTION - D

8. (a) Find the work done by the force F(x, y, z) = (3y, 2x, 4z) over the path Y from A = (0, 0, 0) to B = (1, 1, 1) given by Y $(t) = (t, t^2, t^3)$, 0 < t < 1. Is the work done from A to B independent of the path?

15.

- (i) When is a system said to be in equilibrium? (b)
 - (ii) Give an example of a system in a stable equilibrium.
 - (iii) Give an example of a system in equilibrium, which is not in a stable equilibrium.

15

- (i) What are Hamilton's equations of motion? (c)
 - (ii) Write down Hamiltons equations of motion for the simple pendulum with fixed length l and bob mass m. 10
- **9.** (a) (i) Prove that the λ earth move around the sun in a plane.
 - (ii) Hence or otherwise, prove Kepler's second law.

15

- (b) (i) State the principle of virtual work. Consider a simple pendulum with fixed length l.
 - (ii) What is a virtual displacement in this case?
 - (iii) What are the forces acting on a simple pendulum? Are they in equilibrium?

15

The Hamiltonian for a physical system is given by (c)

$$H = \frac{1}{2} \sum_{i=1}^{3} (p_i^2 + q_i^2)$$

- (i) Write down the equations of motion.
- (ii) Prove that $F(q, p) = q_2 p_3 q_3 p_2$ is a constant of the motion.
- 10 (iii) Are there any other constants of motion?