2010 MATHEMATICS - II (Optional)

200045

Standard : Degree

Total Marks: 200

Nature : Conventional

Duration: 3 Hours

Note:

(i) Answers must be written in English only.

- (ii) Question No. 1 is Compulsory. Of the remaining questions, attempt any four selecting one question from each section.
- (iii) Figures to the RIGHT indicate marks of the respective question.
- (iv) Use of log table, Non-Programmable calculator is permitted, but any other Table / Code / Reference book are not permitted.
- (v) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
- (vi) Credit will be given for orderly, concise and effective writing / presentation.
- (vii) Candidate should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.
- 1. Answer *any four* of the following:
 - (a) Prove that, if H is a p-Sylow subgroup of a group G and $x \in G$, then $x^{-1}Hx$ is also **10** a p-Sylow subgroup of G.
 - (b) Find the residue of the function.

10

$$\frac{1}{\left(z^2+1\right)^3} \text{ at } z=i.$$

(c) Find the general solution of
$$\frac{\partial^2 u}{\partial x^2} - 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} = 0$$
.

P.T.O.

Marks

(d) Are the following two graphs isomorphic? Justify your answer.

10

(e) Prove that if f is continuous function on [a, b] and if f(a) and f(b) are of opposite signs, then there exists a point $c \in (a, b)$ such that f(c) = 0.

SECTION - A

- 2. Answer the following sub-questions:
 - (a) Prove that if p is prime number and a is any integer then $a^p \equiv a \mod p$.

15

(b) Prove that every finite integral domain is field.

15

15

www.mpscmaterial.com

- (c) Prove that, for every prime number p and every positive integer m there is a 10 unique field having p^m elements.
- **3.** Answer the following sub-questions :
 - (a) Prove that the order of every element of a finite group is finite and is less than or equal to the order of the group.
 - (b) Prove that the ring of integers is a principal deal ring.
 - (c) Let R be the field of real numbers and Q the field of rational numbers. In R, $\sqrt{2}$ and $\sqrt{3}$ are both algebraic over Q. Exhibit a polynomial of degree 4 over Q satisfied by $\sqrt{2} + \sqrt{3}$.

10

SECTION - B

- 4. Answer the following sub-questions:
 - (a) Prove that every bounded sequence of real numbers has a convergent sub-sequence. 15
 - (b) Prove that the series $\sum (-1)^n \left[\sqrt{n^2 + 1} n \right]$ is conditionally convergent. 15
 - (c) Prove that a necessary condition that a function

$$f(z) = U(x, y) + i V(x, y)$$

be analytic at a point z=x+iy of its domain D is that at a point (x, y) the first order partial derivatives of U and V with respect to x and y exist and satisfy the Cauchy-Riemann equations

$$U_x = V_y$$
 and $U_y = -V_x$.

- 5. Answer the following sub-questions:
 - (a) Applying Cauchy's criterion of convergence, prove that the sequence $\{S_n\}$ defined by

$$S_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$$
 is convergent.

- (b) Prove that, if the series \sum an and \sum bn are convergent, then $\sum \sqrt{anbn}$ is also convergent. Show by example that $\sum \sqrt{anbn}$ may converge, even if \sum an and \sum bn are divergent.
- (c) Evaluate $\int_{c}^{z^3} \frac{z^3}{z-2i} dz$, where c is circle |z-2| < 5, by using Cauchy's integral formula.

Marks

10

(d) Use simplex method to maximize

$$z = -x_1 + 3x_2 - 2x_3$$

subject to the constraints

$$\begin{aligned} &3x_1 - x_2 + 2x_3 \leq 7 \\ &-2x_1 + 4x_2 &\leq 12 \\ &-4x_1 + 3x_2 + 8x_3 \leq 10 \\ &x_1, \ x_2, \ x_3 \geq 0 \end{aligned}$$

-000₀-

www.mpscmaterial.com

Marks

SECTION - C

- **6.** Answer the following sub-questions :
 - (a) Determine the general solution of the differential equation :

15

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4y = \mathrm{e}^x + \sin 2x$$

- (b) If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$, then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 y^2}{x^2 + y^2}$.
- (c) Find integral surface of the equation :

$$(x - y) y^2 \frac{dz}{dx} + (y - x) x^2 \frac{dz}{dy} = x^2 + y^2$$

through the curve $xz = a^2$, y = 0.

- 7. Answer the following sub-questions:
 - (a) Determine general solution of the differential equation

15

15

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - 6\frac{dy}{dx} = 1 + x^2$$

(b) If
$$\theta = t^n e^{-r^2/4t}$$
, find values of n for which $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$.

(c) Find complete solution of $(p^2 + q^2)y = qz$, by Charpit's method.

15

P.T.O.

10

SECTION - D

- 8. Answer the following sub-questions:
 - (a) Perform five iterations of the bisection method to find smallest positive root of the equation $x^3 5x + 1 = 0$, given that the root lies between 0 and 1.
 - (b) Use Gauss-Seidal iteration method to solve :

$$2x_1 - x_2 = 7.$$

$$-x_1 + 2x_2 - x_3 = 1$$

$$-x_2 + 2x_3 = 1$$

by performing three iterations.

- (c) Using Trapezoidal rule find $\int_0^2 (1+4x^2) dx$ by dividing [0, 2] into 4 equal 10 subintervals. Find also error in your answer.
- (d) Use simplex method to maximize $z = 5x_1 + 3x_2$ subject to the constraints $x_1 + x_2 \le 2, \ 5x_1 + 2x_2 \le 10, \ 3x_1 + 8x_2 \le 12, \ x_1, \ x_2 \ge 0.$
- 9. Answer the following sub-questions:
 - (a) Use Newton Raphson method to find a real root of the equation $x^3 x 4 = 0$, which lies between 1 and 2 correct upto three places of decimals.
 - (b) Using Newton's forward difference interpolation formula, estimate f (8), from the data:

x	5	10	15	20
f (x)	50	70	100	145

(c) Find an approximate value of \log_e^2 by evaluating $\int_1^2 \frac{1}{x} dx$ using Simpson's 10 one-third rule taking five ordinates.

P.T.O.