2007 STATISTICS - II (Optional)

100041

Standard: Degree

Total Marks: 200

Nature: Conventional

Duration: 3 Hours

Note:

- (i) Answers must be written in **English** only.
- (ii) Question **No. 1** is **Compulsory.** Of the remaining questions, attempt **any four** selecting one question from **each section**.
- (iii) Figures to the RIGHT indicate marks of the respective question.
- (iv) Use of log table, Non-Programmable calculator is permitted, but any other Table/Code/Reference book are not permitted.
- (v) Make suitable assumptions, wherever be necessary and state the same.
- (vi) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
- (vii) Credit will be given for orderly, concise and effective writing.
- (viii) Candidate should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.
- 1. Answer *any four* of the following (10 Marks each):
 - (a) Define canonical and standard form of linear programming problem.
 - (b) Explain the operating characteristics curve.

10

10

(c) Three varieties A, B and C of a crop are tested in a randomised block design within four replications. The plot yield in pounds are as follows.

A 6 C 5 A 8 B 9 C 8 A 4 B 6 C 9 B 7 B 6 C 10 A 6

Analyse the experimental yield and state your conclusion.

(d) What is a time series? Explain the components of time series.

10

(e) Write a short note on two person zero-sum game.

10

P.T.O.

SECTION - A

2. Answer the following sub-questions:

Using graphical method solve the L.P.P.

10

Maximize
$$z = 5x + 10y$$

Subject to
$$5x + 8y \le 40$$

$$3x + y \le 12$$

$$x \ge 0, \ y \ge 0.$$

Explain the North-West corner rule and hence solve the following transportation (b) 15 problem.

	D1	D2	D3	D4	Availability
01	6	4	1	5	14
02	8	9	2	7	16
03	4	3	6	2	5
Requirements	6	10	15	4	35

What is simulation technique? Explain the advantages and disadvantages of simulation technique.

3. Answer the following sub-questions:

(a) Using simplex method solve the L.P.P.

10

Maximize
$$z = 3x_1 + 4x_2$$

Subject to $x_1 + x_2 \le 450$

$$2x_1 + x_2 \le 600$$

$$x_1, x_2 \ge 0.$$

Explain the Assignment Algorithm and hence determine the optimum assignment (b) 15 schedule.

	Jobs				
Persons	1	2	3	4	5
A	8	4	2	6	1
В	0	9	5	5	4
C	3	8	9	2	6
D	4	3	1	0	3
E	- 9	5	8	9	5

(c) What do you mean by generation of random observations? Determine the random observations from the following discrete distribution.

x	0	1	2	3
p (x)	0.4	0.3	0.2	0.1

SECTION - B

- **4.** Answer the following sub-questions :
 - (a) Draw the mean chart and find out whether the production process is in control or not.

Sample		We	ight	
1	10	12	10	12
2	10	12	13	13
3	10	10	9	11
4	11	10	9	14
5	12	12	12	12

- (b) (i) Distinguish between process control and product control.
 - What do you understand by single sampling plan. 5
- (c) State and explain the process capability indices.
- (d) State and explain the concept of reliability. 10
- 5. Answer the following sub-questions:

(ii)

(a) The following table gives the inspection data to 10 samples of 100 items each, concerning the production of bottle corks.

Sample No.	1	2	3	4	5	6	7	8	9	10
Size of Sample	100	100	100	100	100	100	100	100	100	100
No. of defectives	5	3	3	6	5	6	8	10	10	4

Construct P chart.

- (b) (i) What is a control chart?
 - ii) Write short note on Double sampling plan.
- (c) Explain the terms Cp, Cpk and Cpm.
- (d) Explain the reliability of series and parallel system.

10

5

5

10

5

P.T.O.

SECTION - C

- **6.** Answer the following sub-questions :
 - (a) (i) What is Latin Square Design?

5

(ii) What is a factorial experiment?

5

(b) State and explain the analysis of variance for Balanced Incomplete Block Design?

10

(c) A-2² experiment in six randomised blocks was conducted in order to obtain an idea of the interaction.

•	Bloc	k - 1		
(1)	s	ns	n	
117	106	109	114	

	Bloc	k - 2	
ns	(1)	s	n
114	120	117	114

		RIOC	K - 3	
	1)	n	s	ns
1	11	117	114	106

	Bloc	K - 4	
ns	n	s	(1)
93	121	112	108

Block - 5

ns s (1) n
75 97 73 38

		0	
n	(1)	ns	s
58	81	105	11 <i>7</i>

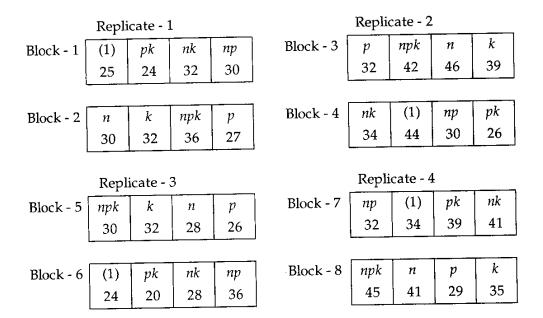
Analyse the data to find out if there are any significant treatment effects - Main or interaction.

(d) What do you mean by analysis of covariance?

10

- 7. Answer the following sub-questions:
 - (a) (i) What are the three basic principles of design? Explain them.

5


(ii) What is meant by confounding in a factorial experiment?

5

(b) Write a note on missing plot techniques.

10

(c) For 2³ factorial experiment three factors N, P, K each 2 levels, the design and yield per plot are given below Analyse the experiment.

(d) Explain the analysis of Covariance for a oneway layout with one concomitant 10 variable.

SECTION - D

- **8.** Answer the following sub-questions :
 - (a) Calculate:

15

- (i) Laspeyre's Index
- (ii) Paaschee's Index
- (iii) Drobish and Bowley's Index
- (iv) Fisher's Index
- (v) Marshall and Edgeworth's Index

P.T.O.

(vi) Walsch's Index.

	1982		1985	
Commodity	Price	Quantity	Quantity	Price
A	5	100	150	6
В	4	80	100	5
С	2.5	60	72	5
D	12	30	33	9

- (b) Define Life table. What are the uses of life tables? State the assumptions in the construction of life-table.
- (c) Calculate standardised Death rates (SDR).

10

Age	Local	Locality A		lity B	
group	Standard Population		Local Po	pulation	
in years	Population	Deaths	Population	Deaths	
under 5	4500	135	4000	144	
5 - 15	10000	40	10500	63	
15 - 65	12500	75	13500	81	
above 65	3000	140	2000	102	
T	uww.	mpsc	mater	Tal.co	1

- **9.** Answer the following sub-questions :
 - (a) Calculate the index Number using :

15

- (i) Aggregate expenditure method and
- (ii) Family Budget method for the year 1975 with 1965 as the base year.

Commodity	Quantity in units in 1965	Price per unit in 1965	Price per unit in 1975
A	100	8.00	12.00
В	25	6.00	7.50
С	10	5.00	5.25
D	20	48.00	52.00
E	25	15.00	16.50
F	30	9.00	27.00

(b) Compute the Crude Death rates (C.D.R.) of the two populations A and B from the following data.

Age group	A		В	
in years	Population	Deaths	Population	Deaths
Below 5	15000	360	40000	1000
5 - 30	20000	400	52000	1040
above 30	10000	280	8000	240

(c) Calculate the gross and net reproduction rates.

10

Age group	Female Population	Female live	Survival
	(In thousands)	births	factor
15 - 19	1399	15133	0.9694
20 - 24	1422	94155	0.9668
25 - 29	1521	102676	0.9632
30 - 34	1756	72490	0.9584
35 - 39	1451	31402	0.9519
40 - 44	1689	10640	0.9424
45 - 49	1667	700	0.9279

www.mpscmaterial.com