2007 PHYSICS - I (Optional)

100059

Standard : Degree

Total Marks: 200

Nature : Conventional

Duration: 3 Hours

Note:

- (i) Answers must be written in English only.
- (ii) Question **No. 1** is **Compulsory**. Of the remaining questions, attempt **any four** selecting one question from **each section**.
- (iii) Figures to the RIGHT indicate marks of the respective question.
- (iv) Sign at the beginning indicates the different part of the question.
- (v) Make suitable assumptions, wherever be necessary and state the same.
- (vi) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
- (vii) Credit will be given for orderly, concise and effective writing.
- (viii) Candidate should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.
- (ix) For each slab of 10 and 15 marks, the examinee is expected to write answers in 125 and 200 words respectively.

1. Answer any four of the following (10 Marks each):

- (a) Define angular momentum of a partical. Show that time rate of change of Angular 10
 Momentum of a partical is equal to the torque acting on it.
- (b) What are ultrasonic waves? Explain a method of production of ultrasonic wave by use of piezo-electric effect. Calculate the fundamental frequency of ultrasonic waves produced by quartz crystal of thickness (*l*) = 0.5 mm.
 (Given: Young's Modulus of quartz (Y) = 8 × 10¹¹ dyne/cm² and the density (ρ) = 2.65 gm/cm³).
- (c) What do you understand by the term Polarization of light? Describe the process of production of linearly polarized light by refraction.
- (d) What do you mean by Atmospheric Pollution? Explain. Describe Green-house 10 effect.
- (e) What do you know about stratospheric ozone deplition? Discuss its causes.

P.T.O.

Marks

SECTION - A

- 2. Answer the following sub-questions:
 - (a) Define gravitational potential. Explain? Derive an expression for gravitational 15 potential due to spherical body at a point out side the shell.
 - (b) What is torsional pendulum? Derive an expression for periodic time of the torsional pendulum.
 - (c) State Bernoulli's theorem and deduce Bernoull's equation.
- 3. Answer the following sub-questions:
 - (a) State Newton's Laws of Motions. Newton's First law is simply a special case of Newton's second law of Motion. Explain? Discuss the limitations of Newton's law of Motions.
 - (b) Explain the term Elasticity with suitable example. State and explain Hook's Law. 10
 - (c) Define surface Tension. State its SI unit and give its dimensions. A drop of water of 0.0005 meter radius is split into 1000 tiny drops of equal radii. Find mechanical work done.

(Given : Surface Tension of water = 75×10^{-3} N/m).

SECTION - B

- 4. Answer the following sub-questions:
 - (a) Derive the relativistic length contraction using Lorentz transformation. A meter stick is projected into space and its length appears to be contracted to 50 cm. What is the velocity with which the stick is projected?
 - (b) The differential equation for damp natural Oscillation is $\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + w^2x = 0$, 15 obtain the general solution for damp motion.
 - (c) Explain in detail the principle and working of reproduction of sound on a CD. 10

5.	Anst	wer the following sub-questions :	rks
	(a)	Explain construction and working of Michelson-Morley experiment, and discuss its negative result.	15
	(b)	Define displacement resonance in Forced Oscillation. State the condition for displacement resonance and derive the expression for resonance frequency.	15
	(c)	Explain in detail the principle and working of recording of sound on a cine film.	10
SECTION - C			
6.	Answer the following sub-questions:		
	(a)	Explain the experimental arrangement of Newton's ring and obtain the condition for bright and dark rings.	10
	(b)	Discuss the principle of Fabri-Perot interferrometer and state its uses.	10
	(c)	Distinguish between Fresnel and Frannhofer type diffraction. Explain Fresnell's half-period zones.	10
	(d)	Give the theory of concave grating.	10
7.	Answer the following sub-questions:		
	(a)	What is interference of light? Discuss the necessary conditions for interference of light.	10
	(b)	Draw a neat diagram of Twyann - Green Interferrometer and explain its working.	10
	(c)	What do you understand by the resolving power of an optical Instruments? Explain Rayleigh criterian for resolution.	10

3

P.T.O.

10

(d) Explain and derive an expression for resolving power of Prism.

Marks

10

SECTION - D

- 8. Answer the following sub-questions:
 - (a) What are the assumptions of Kinetic theory of gasses? State and prove Law of Equipartition of Energy.
 - (b) Describe Cornat's reversible cycle and derive an expression for its efficiency. 10
 - (c) Explain Bose-Einstein condensation. Maxwell's Boltzmann distribution as a limiting case of Bose Einstein and Fermi Disac Distributions. Explain?
- 9. Answer the following sub-questions:
 - (a) Using the law of Equipartition of Energy prove that,
 - (i) for mono atomic gas, γ (gamma) = 1.66 and
 - (ii) for diatomic gas, γ (gamma) = 1.4
 - (b) Calculate the change in entropy when 10 gm of ice at 0 °C. melts to form water at the same temperature.

(Given : Specific latent heat of ice = 80 cal/gm.)

(c) Discuss experimental verifications of Maxwell's distribution of Molecular speeds.
 20 Calculate the RMS velocity of H₂ at 27 °C.
 (Civen: Boltzmann constant (k) = 1.38 × 10⁻²³ L/deg, and mass of Hydrogen

(Given : Boltzmann constant (k) = 1.38×10^{-23} J/deg, and mass of Hydrogen Molecule = 3.34×10^{-27} kg.)