2007 CHEMISTRY - I (Optional)

100058

Standard : Degree

Total Marks: 200

Nature : Conventional

Duration: 3 Hours

Note:

- (i) Answers must be written in English only.
- (ii) Question No. 1 is Compulsory. Of the remaining questions, attempt any four selecting one question from each section.
- (iii) Figures to the RIGHT indicate marks of the respective question.
- (iv) Use of log table, Non-Programmable calculator is permitted, but any other Table / Code / Reference book are not permitted.
- (v) Make suitable assumptions, wherever be necessary and state the same.
- (vi) Number of optional questions upto the prescribed number in the order in which they have been solved will only be assessed. Excess answers will not be assessed.
- (vii) Credit will be given for orderly, concise and effective writing.
- (viii) Candidate should not write roll number, any name (including their own), signature, address or any indication of their identity anywhere inside the answer book otherwise he/she will be penalised.
- (ix) For each slab of 10 and 15 marks, the examinee is expected to write answers in 125 and 200 words respectively.

1. Answer any four of the following:

- (a) What are postulates of Werner's theory of coordination compounds? Give 10 experimental evidences to support it.
- (b) What are olefin complexes? Discuss bonding in such complexes. 10
- (c) What are colloids? Give classification of colloids (with examples) on the basis of physical state of dispersed phase and dispersion medium.
- (d) Draw labelled phase diagram of water system and discuss the importance of various points, lines and areas in it.
- (e) What is green house effect? Which gases are responsible for it? What are its consequences?

P.T.O.

Marks

		SECTION - A	
2.	Ans	swer the following sub-questions :	
	(a)	(i) Calculate the wave length associated with an electron $(m=9.1\times10^{-31}\text{kg})$ travelling with one third speed of light $(h=6.624\times10^{-34}\text{ Js and }C=2.998\times10^8\text{ms}^{-1})$	5
		(ii) Describe the mechanism of colours imparted to the flame by alkali metals and some alkaline earth metals.	5
	(b)	What is VSEPR theory ? Explain hybridisation and shapes of ${\rm CIF_3}$ and ${\rm IC1_2}^-$ on the basis of it.	10
	(c)	What are interhalogen compounds? How do they differ from halogens? Give preparation of each type of interhalogen compound.	10
	(d)	What are transition elements? Explain the trends in atomic and ionic radii of these elements.	10
3.	Ans	wer the following sub-questions :	
	(a)	 (i) Draw radial Probability distribution curves for 1s, 2s, 3s and 4s orbitals. (ii) Explain the mobilities of alkali metal ions in aqueous solution. 	5
	(b)	What is lattice energy? Explain Born-Haber cycle to calculate the lattice energy of NaCl crystal.	10
	(c)	Explain structure and bonding in diborane and tetrasulphur tetranitride.	10
	(d)	Discuss magnetic properties of transition elements.	10
		SECTION - B	
4.	Ansv	ver the following sub-questions :	
	(a)	Explain diagramatically how d orbitals lose their degeneracy in octahedral and square planar field.	10
	(b)	For a tetrahedral Co (II) Complex, μ_{eff} = 4.87 B.M. The crystal field splitting parameter, D_2 for the Complex is 294 cm ⁻¹ . Calculate spin-orbit coupling constant, λ , of Co (II) in this complex.	10

Marks

- (c) (i) Give the spectroscopic symbol for ground state term in the following 5 complexes.
 - (1) $[C_r (H_2O)_6]^{3+} (Cr = 24)$ (2) $[C_o(NH_3)_6]^{2+} (Co = 27)$
 - (ii) Give electronic configuration of lanthanide elements. 5
- (d) What are actinides? Give a method of separation of Np, Pu and Am from U. 10
- 5. Answer the following sub-questions:
 - (a) Explain with suitable examples, different factors affecting crystal field splitting parameter.
 - (b) Which of the following complexes show orbital contribution to their magnetic noments? Justify your answer.
 - (i) $Na_4 [C_0(N_0)_6]$ (ii) $K_3 [F_e (CN)_6]$, (Fe = 26)
 - (c) (i) Explain Laporte Selection rule in d-d transitions. State under which conditions it is relaxed?
 - (ii) What is lanthanide contraction? What are its consequences?
 - (d) Give points of similarities between lanthanides and later actinides. 10

SECTION - C

- **6.** Answer the following sub-questions :
 - (a) (i) Explain Lewis concept of acids and bases with suitable examples. What are drawbacks of the concept.
 - (ii) What are nonaqueous solvents? Explain in short acid-base reactions in liquid NH₃ as a solvent.
 - (b) Derive the reduced equation of state and state the law of corresponding state. 10
 - (c) What are liquid crystals? Describe in short classification of thermotropic liquid crystals.
 - (d) Derive Bragg's equation $n\lambda = 2d \sin \theta$.

P.T.O.

		Mai	ľKS			
7.	Ans	Answer the following sub-questions:				
	(a)	(i) What are limitations of Arrhenius theory of acids and bases.(ii) What is dipole moment of a solvent? Explain it with respect to different solvents.	5 5			
	(b)	Derive van der Waal's Equation for real gases.	10			
	(c)	What is isotropy and anisotropy? Describe following properties of liquid crystals. Viscosity, optical properties, electrical properties and magnetic properties.	10			
	(d)	What is Tyndall effect in colloids? Explain it in short.	10			
		SECTION - D				
8.	Ans	wer the following sub-questions :				
	(a)	What is first order reaction? Derive an expression for the rate constant of first order reaction.	15			
	(b)	Derive an expression for work done in isothermal reversible expansion of a gas.	15			
	(c)	State and explain law of mass action. Deduce the law of Chemical equilibrium. What is meant by equilibrium constant?	10			
9.	Ans	wer the following sub-questions :				
	(a)	How will you determine order of a reaction using differential rate equation? The half-life period of a substance is 50 min. at a certain concentration. When the concentration is reduced to one half of the initial concentration the half life period is 25 min. Calculate the order of the reaction.	15			
	(b)	State and explain Carnot theorem. What is Carnot cycle? Calculate the efficiency of a Carnot engine.	15			
	(c)	Discuss the equilibrium of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$. Show that for above reaction $K_p = K_e$.	10			