नेन	103797 स्थापत्य अभियांत्रिकी पेपर - 1 एकूण प्रश्न : 10 एकूण प्रश्न : 10
400	रस्च उन्न २०
(1)	स्दर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगे बदलून घ्यावी.
(2)	आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा. - केंद्राची संकेताक्षरे - केंद्राची संकेताक्षरे
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा .
(4)	या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचविली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्य चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रका उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
(5)	सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्त <u>रे द्यावीत</u> . घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ घालविता पुढील प्रश्नाकडे वळाये . अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणू वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाण नाही. एकापेक्षा जास्त उत्तरे नमूद केल्यास ते उत्तर चुकीचे धरले जाईल व त्या चुकीच्या उत्तराचे गुण वजा केले जातील.
(7)	प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमू करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चुकीच्या उत्तरांसाठी 25% किंवा 1/4 गुण वजा करण्या येतील"
Г	=
ह्या परी कोप ठयव तसे एक तसे ठ्या का	प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराल क्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आश गत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाञ्य गत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाञ्य ततीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसा व प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुप हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल. च ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणा क्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुस वाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

1. The kinematic indeterminacy of the following beam after imposing the boundary conditions is

2. A fixed beam AB, of constant EI, shown in figure below, supports a concentrated load of 10 KN. What is the fixed end-moment M_{FAB} at support A?

Sinking of an intermediate support of a continuous beam

- (i) Reduces the negative moment at support.
- (ii) Increases the negative moment at support.
- (iii) Reduces the positive moment at the centre of span.
- (iv) Increases the positive moment at the centre of span.

Out of these above statements :

(1) (i) and (iv) are correct

Α

3.

- (2) (i) and (iii) are correct
- (3) (ii) and (iii) are correct
- (4) (ii) and (iv) are correct
- 4. Fixed end of propped cantilever due to a concentrated load P at a distance 'a' from

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

M14

- 5. The sinking moment in a prismatic fixed beam whose one support yields by δ will be where, *l* is length of beam
 - I is Moment of Inertia

E is Modulus of Elasticity

(1) $\frac{2 \operatorname{EI} \delta}{l}$ (2) $\frac{4 \operatorname{EI} \delta}{l}$ (3) $\frac{6 \operatorname{EI} \delta}{l^2}$ (4) $\frac{6 \operatorname{EI} \delta}{l}$

6. The distribution factor for BA member in the given figure is

7. In the frame shown in the figure, if lateral sway of BC is Δ , the sway in member DC is

- (1) Δ (2) $\Delta \cos \theta$ (3) $\Delta \sin \theta$ (4) $\Delta \sec \theta$
- 8. Pick up the correct option from the following for the beam as shown in the figure

If the far end of the beam is fixed, the stiffness of beam with usual notations is 9.

(1)	$\frac{2 \text{ EI}}{\text{L}}$	(2)	$\frac{4 \text{ EI}}{\text{L}}$
(3)	<u>3 EI</u> L	(4)	$\frac{4 \text{ EI}}{L^2}$

- If three members meet at a joint and the stiffness of members are $K_1 = EI$, 10. $K_2 = 2 EI, K_3 = 1.5 EI$, the distribution factor for member 1 is
 - $\frac{2}{9}$ $\frac{1}{3}$ $\frac{2}{7}$ (1)(2) (3) (4) None of the above

11. Pick up the correct statement that corresponds to moment distributions method.

(i) Unbalanced moment is carried over to the other end of the member when the joint is released.

(ii) Carry over moment has same sign as the distribution end moments.

- (1) Both (i) and (ii) are correct
- (2)Only (i) is correct

(3)Only (ii) is correct

- (4)Both (i) and (ii) are incorrect
- 12. If the central rise of a symmetrical parabolic arch is 10 m, then the rise of the arch at quarter point is
 - (1) 2·5 m (2)5.0 m (3) 7·5 m (4) 8.0 m
- 13. When a 3-hinged semi-circular arch is subjected to uniformly distributed load on entire span, the nature of bending moment at any section is
 - (1)Sagging only
 - (2)Hogging only
 - (3) Zero
 - (4) Partially Sagging & Partially Hogging

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

14. For suspension cable with two-hinged stiffening girder as shown in figure, the influence diagram for horizontal thrust is

15. The net horizontal force (F_H) on the top of this tower and the bending moment (B.M.) at the base of the tower due to cable reaction is

Figure : Roller support

Answer options :

- (1) $F_{H} = T_{A} \cos \theta$, B.M. = $T_{A} \sin \theta$
- (2) $F_H = T_S \cos \theta$, B.M. = Zero
- (3) $F_H = Zero, B.M. = T_A \sin \theta T_A \cos \theta$
- (4) $F_H = Zero, B.M. = Zero$

16. A truss of panel dimensions $3 \times n \times 4$ m is as shown in figure. The influence line diagram for the force in the member $U_2 L_3$ is

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

(3)

- 17. Which principle can be used to obtain the general shape of the influence lines ?
 - (1) Bernoulli Euler's Principle

Stokes' Principle

- (2) Muller Breslau's Principle
 (4) D'Alembert's Principle
- 18. The co-ordinates for a beam are shown in figure. Stiffness matrix is given by

- **19.** For a prismatic beam element, if the stiffness matrix is $\frac{2\text{EI}}{L}\begin{bmatrix}2&1\\1&2\end{bmatrix}$, then the flexibility matrix is
 - $(1) \quad \frac{L}{2EI} \begin{bmatrix} 0.5 & 1 \\ 1 & 0.5 \end{bmatrix}$
 - $(2) \quad \frac{\mathrm{L}}{\mathrm{6EI}} \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$
 - $(3) \quad \frac{L}{6EI} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$
 - $(4) \quad \frac{L}{3EI} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$

20. The flexibility matrix of the beam shown below is ____

- 21. For stable structures, one of the important properties of flexibility and stiffness matrices is that the element on the main diagonal
 - (i) of a stiffness matrix must be negative.
 - (ii) of a stiffness matrix must be positive.
 - (iii) of a flexibility matrix must be positive.
 - (iv) of a flexibility matrix must be negative.

Answer options:

- (1) (i) and (iii) (2) (i) and (iv)
- (3) (ii) and (iii) (4) (ii) and (iv)
- 22. Flexibility matrix method of analysis is basically
 - (1) Force method
 - (2) Displacement method
 - (3) Equilibrium method
 - (4) None of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

 23. The angle of dispersion of load in web buckling of beam is 30° 33° 40° 45° 24. In case of unequal angle section oriented with longer leg vertical, axis par shorter leg of the angle and passing from centroid of cross section is	allel to 00 mm, nection								
(1) 30° (2) 33° (3) 40° (4) 45° 24. In case of unequal angle section oriented with longer leg vertical, axis par shorter leg of the angle and passing from centroid of cross section is	allel to 00 mm, nection								
 24. In case of unequal angle section oriented with longer leg vertical, axis par shorter leg of the angle and passing from centroid of cross section is	allel to 00 mm, nection								
 (1) x - x axis (2) y - y axis (3) z - z axis (4) u - u axis 25. Two steel plates of 100 mm width each, are lap jointed. If length of lap is 20 the maximum number of 20 mm diameter bolts that can be provided for con are	00 mm, nection								
 (3) z - z axis (4) u - u axis 25. Two steel plates of 100 mm width each, are lap jointed. If length of lap is 20 the maximum number of 20 mm diameter bolts that can be provided for con are (1) one (2) two (3) three (4) four 26. Design of pins is primarily governed by (1) Shear (2) Bearing (3) Flexure (4) All of the 27. Slope of a truss is equal to (1) pitch/2 (2) pitch (3) 2 times pitch (4) 1.5 times 	00 mm, nection								
 25. Two steel plates of 100 mm width each, are lap jointed. If length of lap is 20 the maximum number of 20 mm diameter bolts that can be provided for con are	00 mm, nection								
(1) one (2) two (3) three (4) four 26. Design of pins is primarily governed by (1) Shear (2) Bearing (3) Flexure (4) All of the 27. Slope of a truss is equal to (1) pitch/2 (2) pitch (3) 2 times pitch (4) 1.5 times	above								
 26. Design of pins is primarily governed by (1) Shear (2) Bearing (3) Flexure (4) All of the 27. Slope of a truss is equal to (1) pitch/2 (2) pitch (3) 2 times pitch (4) 1.5 times 	above								
(1) Shear (2) Bearing (3) Flexure (4) All of the 27. Slope of a truss is equal to (1) pitch/2 (2) pitch (3) 2 times pitch (4) 1.5 times	above								
 27. Slope of a truss is equal to (1) pitch/2 (2) pitch (3) 2 times pitch (4) 1.5 times 									
(1) pitch/2 (2) pitch (3) 2 times pitch (4) 1.5 times									
	pitch								
28. In columns, splices should be provided at									
(1) the floor levels (2) the mid height of columns									
(3) the beam-column joints (4) $\frac{1}{4}$ height of columns									
29. The imperfection factor for welded steel section is	The imperfection factor for welded steel section is								
(1) 0.21 (2) 0.35 (3) 0.42 (4) 0.49									
30. What is the efficiency of joint when strength of bolt per pitch length is 60 k strength of plate per pitch length is 150 kN ?	N and								
(1) 25% (2) 30% (3) 35% (4) 40%									
31. A bolted joint may experience	A bolted joint may experience								
(1) shear failure									
(2) shear failure of plates									
(3) bearing failure and bearing failure of bolts									
(4) All of the above									
कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK									

Α	11						
32.	The partial safe	ety factor for the mat	erial of bolt is				
	(1) 1.0	(2) 1.10	(3) 1 ·15	(4) 1.25			
 33.	Lacing shall be axial force in m	designed to resist a ember.	total transverse shea	ur equal to	of		
	(1) 5%	(2) 1%	(3) 4.3%	(4) 2·5 %			

34. A continuous beam ABCD as shown in figure is subjected to U.D.L., 'w' kN/m over all spans. What is the moment at support 'C' due to Dead Load (w_d) and Live Load (w_l) as per IS 456-2000 ?

- 35. For two-way continuous slab of shorter span ≤ 3.5 m with HYSD reinforcement, the span to overall depth ratio is taken as ______ to satisfy the vertical deflection limit for loading class up to 3 kN/m².
 - $(1) \quad 26 \qquad (2) \quad 28 \qquad (3) \quad 32 \qquad (4) \quad 35$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

36. What is the unsupported length of the column as shown in figure, if c/s of column is $300 \text{ mm} \times 500 \text{ mm}$ and c/s of bracket is $300 \text{ mm} \times 500 \text{ mm}$?

37. A beam is designed using M20 grade of concrete and Fe415 grade of steel is used for tension reinforcement. If diameter of main steel is 12 mm, then what is the minimum value of development length (L_d) provided in support section?

(1)	470 mm	(2)	564 mm	(3) 260 m	\mathbf{m} (4)	300 mm
-----	---------	-----	---------	-----------	------------------	---------

- 38. The basic maximum ratio of span to effective depth of a slab simply supported and spanning in one direction is ______ for spans up to 10 m.
 (1) 35 (2) 25 (3) 30 (4) 20
- 39. The horizontal distance between parallel reinforcement bars or groups, near the tension face of a beam shall not be ______ if Fe415 grade of steel is used as reinforcement without redistribution of moments.
 (1) 125 mm
 (2) 150 mm
 - (3) 165 mm (4) 180 mm

The thickness at the edge of footing shall be not less than _____ for footing on 40. soil nor less than _____ above the top of the piles for footing on piles. (1)100 mm, 150 mm (2)125 mm, 200 mm (4)150 mm, 150 mm (3) 150 mm, 300 mm In case of stairs with open wells, where spans partly crossing at right angles occur, 41. the load on area common to any two such spans may be taken as _____ in each direction. $\frac{2}{3}$ 1 (1)(2)(3) (4) $\overline{2}$ 42. A circular water tank is designed to store water for 78,500 litres capacity. The water tank rests on ground with flexible joints. If M30 concrete and Fe415 steel is used, then what is the maximum hoop tension developed in water tank, if diameter and total height of tank are 5 m and 4 m respectively? (1)200 kN (2)150 kN (3) 100 kN (4) 50 kN43. Cantilever retaining wall is designed mainly to resist _ _ ____ from backfill. (1) Active earth pressure (2)Passive earth pressure (3) Uplift earth pressure (4)Water pressure 44. If the thickness of the slab is 160 mm, then what will be the maximum diameter of reinforcing bars that can be used as main reinforcement? (1)10 mm (2)12 mm (3)16 mm (4) 20 mm कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK P.T.O.

13

Α

M14

(1)Post-tensioned members

- (3)**Ruptured members**
- (2)Pre-tensioned members
- (4)**Tensile members**

46. A simply supported prestressed concrete beam of c/s $150 \text{ mm} \times 250 \text{ mm}$ is subjected to a superimposed load of 5 kN/m over a span of 5 m. If the prestressing force of 750 kN is applied through parabolic cable with eccentricity of 50 mm at centre and zero eccentricity at support, then what will be the extreme fibre stress at bottom fibre at end support ? (Neglect the self-weight)

(1)20 MPa (2)23.68 MPa (3)16.31 MPa (4)26 MPa

47. In reference to limit state of serviceability cracking, when cracking is permitted and hypothetical tensile stresses are considered in design assuming section is uncracked, it is _____

(1)	Type-1 element	. (2)	Type-2 element
(3)	Type-3 element	(4)	Type-4 element

- **48**. In the case of high tensile alloy steel bars, any straightening shall be carried out by mechanical means. Bars shall not be bent when their temperature is less than
 - (1) 10° (2) 20° (3) 5° (4) 15°

A post-tensioned prestressed concrete beam is stressed by three cables, each with c/s 49. area of 50 mm^2 with an initial stress of 900 MPa. If all three cables are straight and located at an eccentricity of 50 mm, consider modular ratio (m) = 6 and stress in concrete at the level of steel $(f_c) = 5$ MPa, then what will be the loss in stress in cables due to elastic shortening if all cables are simultaneously tensioning and anchoring?

- 0 (1)90 MPa (2)60 MPa (3)30 MPa (4)
- A rectangular concrete beam 120×300 mm is prestressed by straight cable, effective 50. force 180 kN at eccentricity e = 50, area 36×10^3 mm², $z = 18 \times 10^3$ mm³. Find total stress due to prestress. 45

(3)35(4)(1)10 (2)25

The minimum 28-day cube compressive strength prescribed in the Indian Standard 51. Code IS 1343 for pre-tensioned member is _

 45 N/mm^2 40 N/mm^2 30 N/mm^2 35 N/mm^2 (3)(4)(1)(2)

	wire	or bar or str	and.	670%	(3)	76%	(4)	87%	
	(1)	40%			(J)				
53.	Min	imum streng	th of con	crete at trans	fer stag	e shall be		, 	_
	(1)	0·5 f _{ck}	(2)	0·24 √f _{ck}	(3)	0·67 f _{ck}	(4)	0·7 √f _{cł}	<u> </u>
54.	Dry	ing shrinkag	e strain (develops slow	ly, as it		•		
	(1)	develops du	ring init	tial period of c	oncretir	ıg			
	(2)	depends on	time						
	(3)	develops du	e to pres	stressing of co	ncrete				
	(4)	is a function	n of mign	ration of wate	r throug	h the harden	ed concr	ete	
55.	In t	he case of ca	ables or	large bars, th	ne minir	num clear sp	acing m	easured	between
	shea	athings/ducts	shall no	ot be less than	the lar	ger of	·		
	(1)	30 mm or 3	times di	iameter of cal	les.			•	
	(2)	40 mm or	maxim	um size of o	ables o	r bar or no	minal n	naximum	size of
		aggregate p	olus 5 mi	m.					
	(3)	aggregate p 50 mm or 3 plus 5 mm.	olus 5 mr 3 times	m. diameter of c	ables or	nominal ma	aximum	size of a	ggregate
	(3) (4)	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 3 plus 5 mm.	olus 5 mr 3 times 2 times	m. diameter of c diameter of c	ables or ables or	nominal ma	aximum aximum	size of a size of a	ggregate ggregate
 56.	(3) (4) Whi	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. ch IS code d	olus 5 m 3 times 2 times escribes	m. diameter of c diameter of c detailed prec	ables or ables or autions	nominal ma nominal ma regarding sa	aximum aximum fety mea	size of a size of a sures for	ggregate ggregate drilling
56.	(3) (4) Whi and	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. 	olus 5 m 3 times 2 times escribes rations ?	m. diameter of c diameter of c detailed prec	ables or ables or autions	nominal ma nominal ma regarding sa	aximum aximum fety mea	size of a size of a sures for	ggregate ggregate drilling
56.	(3) (4) Whi and (1)	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 3 plus 5 mm. ch IS code de blasting oper IS 1456 – 2	olus 5 m 3 times 2 times escribes rations ? 004	m. diameter of c diameter of c detailed prec	ables or ables or autions (2)	nominal ma nominal ma regarding sa IS 481 – 19	aximum aximum fety mea 67	size of a size of a sures for	ggregate ggregate drilling
56.	 (3) (4) Whi and (1) (3) 	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. ch IS code d blasting oper IS 1456 – 2 IS 2023 – 1	olus 5 m 3 times 2 times escribes rations ? 004 985	m. diameter of c diameter of c detailed prec	ables or ables or autions (2) (4)	regarding sa IS 481 – 194 IS 4081 – 194	aximum uximum fety mea 67 986	size of a size of a sures for	ggregate ggregate drilling
5 6. 57.	(3) (4) Whi and (1) (3) Whe	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. ch IS code de blasting ope: IS 1456 – 2 IS 2023 – 1 en events of cess of numbe	olus 5 m 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering cal	m. diameter of c diameter of c detailed prec detailed prec	ables or ables or autions (2) (4) number	nominal ma nominal ma regarding sa IS 481 – 19 IS 4081 – 19 red as 10, 20	aximum aximum fety mea 67 986 , 30, 40,	size of a size of a sures for etc., wh	ggregate ggregate drilling at is the
 56. 57.	(3) (4) Whi and (1) (3) Whe proc (1)	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. 	olus 5 m 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering call ering	m. diameter of c diameter of c detailed prec network are led ?	ables or ables or autions (2) (4) number	nominal ma nominal ma regarding sa IS 481 – 194 IS 4081 – 19 red as 10, 20 Special Nur	aximum aximum fety mea 67 986 , 30, 40, nbering	size of a size of a sures for etc., wh	ggregate ggregate drilling at is the
56. 57.	 (3) (4) Whit and (1) (3) Whet procession (1) (3) 	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. ch IS code de blasting oper IS 1456 – 2 IS 2023 – 1 en events of cess of number Skip Numb Prime Num	olus 5 m 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering call ering obering	m. diameter of c diameter of c detailed prec detailed prec	ables or ables or autions (2) (4) number (2) (4)	nominal ma nominal ma regarding sa IS 481 – 194 IS 4081 – 19 red as 10, 20 Special Nur Ultimate N	aximum aximum fety mea 67 986 , 30, 40, nbering umberin	size of a size of a sures for etc., wh	ggregate ggregate drilling at is the
 57. 58.	 (3) (4) Whi and (1) (3) Whe prod (1) (3) What what is a second secon	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 3 plus 5 mm. 60 mm or 3 plus 5 mm. 60 mm or 3 plus 5 mm. 61 IS code de blasting oper IS 1456 – 2 IS 2023 – 1 en events of cess of number Skip Numb Prime Num	olus 5 m 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering call ering bering ic time e	m. diameter of c diameter of c detailed prec detailed prec network are led ?	ables or ables or autions (2) (4) number (2) (4) dered in	nominal ma nominal ma regarding sa IS 481 – 19 IS 4081 – 19 IS 4081 – 19 red as 10, 20 Special Nur Ultimate N	aximum aximum fety mea 67 986 , 30, 40, nbering umberin sis ?	size of a size of a sures for etc., wh	ggregate ggregate drilling at is the
5 6. 57.	 (3) (4) Whith and (1) (3) What (1) (3) What (1) 	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. ch IS code de blasting oper IS 1456 – 2 IS 2023 – 1 en events of cess of numbe Skip Numb Prime Num at is optimist Maximum p	olus 5 m 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering call ering bering bering ic time e	m. diameter of c diameter of c detailed prec detailed prec network are led ?	ables or ables or autions (2) (4) number (2) (4) dered in (2)	nominal ma nominal ma regarding sa IS 481 – 19 IS 4081 – 19 IS 4081 – 19 red as 10, 20 Special Nur Ultimate N PERT analy Shortest po	aximum aximum fety mea 67 986 , 30, 40, nbering umberin sis ? ssible tin	size of a size of a sures for etc., wh g	ggregate ggregate drilling at is the
5 6. 57.	 (3) (4) Whith and (1) (3) What (1) (3) What (1) (3) 	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. 12 IS 2023 – 1 60 events of 2023 – 1 60 events of 2023 – 1 61 events of 2023 – 1 61 events of 2023 – 1 7 8 events of 2023 – 1 7 8 events of 2023 – 1 8 events of 2023 – 1 8 events of 2023 – 1 9 events of 2023 – 1 2023 – 1 2020 – 1	olus 5 m 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering call ering bering ic time e possible time	m. diameter of c diameter of c detailed prec detailed prec network are led ?	ables or ables or autions (2) (4) number (2) (4) dered in (2) (4)	nominal ma nominal ma regarding sa IS 481 – 19 IS 4081 – 19 IS 4081 – 19 red as 10, 20 Special Nur Ultimate N PERT analy Shortest po None of the	aximum aximum fety mea 67 986 , 30, 40, nbering umberin sis ? ssible tin above	size of a size of a sures for etc., wh g	ggregate ggregate drilling at is the
56. 57. 58. कच्च्य	(3) (4) Whi and (1) (3) Whe prod (1) (3) Wha (1) (3)	aggregate p 50 mm or 3 plus 5 mm. 60 mm or 2 plus 5 mm. 15 1456 – 2 IS 2023 – 1 en events of cess of number Skip Numb Prime Num at is optimist Maximum p Most likely	olus 5 m 3 times 3 times 2 times 2 times escribes rations ? 004 985 a bigger ering call ering bering ic time e possible time ACE FOR	m. diameter of c diameter of c detailed prec detailed prec network are led ? estimate consi time	ables or ables or autions (2) (4) number (2) (4) dered in (2) (4) K	nominal ma nominal ma regarding sa IS 481 – 194 IS 4081 – 194 IS 4081 – 194 red as 10, 20 Special Nur Ultimate N PERT analy Shortest po None of the	aximum aximum fety mea 67 986 , 30, 40, nbering umberin sis ? ssible tin above	size of a size of a sures for etc., wh g	ggregate ggregate drilling at is the P.T.O.

59. In Quality Control, Reliability, for sampling of units, is expressed as a percentage in the form of a Reliability number as

(1)	100 -	$\frac{\text{no. of defective units}}{\text{no. of units tested}} \times 100$
(2)	100 –	$\frac{\text{no. of units tested}}{\text{no. of defective units}} \times 100$
(3)	100 -	$\frac{\text{no. of units tested}}{\text{no. of defective units}} \times \text{ standard deviation}$

- (4) 100 [no. of possible defective units]
- **60.** Identify which of the following inventory control policy is classified on the basis of consumption rate of inventory and helps to control obsolescence ?
 - (1) SDE (Scarce, Difficult and Easy)
 - (2) VED (Vital, Essential and Desirable)
 - (3) HML (High, Medium and Low)
 - (4) FSN (Fast, Slow and Normal)
- 61. In construction industry, the conformance cost associated with preparing work instructions and checklist, drafting specifications, training of staff and workmen is classified as

	(1)	Prevention Cost	(2) Appraisal	Cost
--	-----	-----------------	---------------	-----------------------

- (3) Failure Cost (4) Inventory Cost
- **62.** Which among the following are the principles which belong to modern management theory suggested by Henry Fayol ?
 - (i) Obtaining harmony in group action
 - (ii) Replacing rules of thumb with science
 - (iii) Authority and Responsibility
 - (iv) Unity of command

Answer options:

- (1) Only (i), (ii) and (iii)
- (2) Only (i), (iii) and (iv) (iv)
- (3) Only (i) and (iii)
- (4) Only (iii) and (iv)

- (i) These are easier to establish.
- (ii) There is no unity of control.
- (iii) Decisions can be taken quickly.
- (iv) There is a strong sense of discipline.

Answer options :

- (1) All of the above
- (2) Only (i), (iii) and (iv)
- (3) Only (i), (ii) and (iv)
- (4) Only (i)

64. Which type of crane will you recommend for the construction of High Rise Building?

- (1) Crawler crane
- (2) Truck mounted crane
- (3) Tower crane
- (4) Gantry crane
- **65.** The occupational disease that results from the inhalation of specific dust to the construction worker is
 - (1) Bursitis
 - (2) Hearing impairment
 - (3) Muscle disorder
 - (4) Pneumoconiosis
- **66.** In quality management system, the set of activities which builds confidence of both customers and managers and suggests that all quality requirements are being met is called as
 - (1) Quality of concept
 - (2) Design quality
 - (3) Quality control
 - (4) Quality assurance

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

67. In solving simultaneous equations by Gauss-Jordan method, the coefficient matrix is reduced to _____ matrix.

- (1) Square (2) Diagonal
- (3) Null (4) Triangular

68. Using Gauss-Jordan method, the solution of the system of equations x + y + z = 9 2x - 3y + 4z = 13 3x + 4y + 5z = 40is (1) x = 3, y = 1, z = 5(2) x = 5, y = 1, z = 3(3) $x = 9, y = 1, z = \frac{13}{2}$ (4) x = 1, y = 3, z = 5

69. Solve the following equations by Gauss elimination method.

- 2x + 4y 6z = -4x + 5y + 3z = 10x + 3y + 2z = 5
- (1) x = -3, y = 2, z = 1(2) x = 3, y = -2, z = 1(3) x = 3, y = 1, z = -2(4) x = 1, y = 3, z = -2

, ..

70. Apply Gauss elimination method to solve the following equations.

x + 4y - z = -5x + y - 6z = -123x - y - z = 4

- (1) x = 1.6479, y = -1.1408, z = 2.0845
- (2) $\mathbf{x} = -2.1155, \, \mathbf{y} = 0.1555, \, \mathbf{z} = 1.5835$
- (3) x = 3.8425, y = -2.2835, z = 0.8455
- (4) $\mathbf{x} = -2.2885, \, \mathbf{y} = 1.4825, \, \mathbf{z} = 3.7885$

Α	19								4
71.	While solving the following simultaneous equations by iterative methods, $x_1 = 0$, $x_2 = 0$ and $x_3 = 0$,								
	20x ₁	$+2x_2 + 6x_3 =$	28				-		
	x ₁ +	$20x_2 + 9x_3 = -$	23			н			
	2x ₁ -	$-7x_2 - 20x_3 =$	- 57						
	wha	t will be the va	lue of	x ₁ in next it	teration ?				
•	(1)	1.0	(2)	1.20	(3)	1.33	(4)	1.40	
72.	Obta	ain root of equa	ation f(\mathbf{x} = cos x -	$xe^x = 0$ us	ing bisectio	on method.		-
	(1)	0.515	(2)	0.425	(3)	0.325	(4)	0.715	
73.	The assu	root of the equining initial ap	uation oproxim	using x lo nation as 2	g ₁₀ x = 1∙ is	2, using N	ewton-Rap	hson method b	y
	(1)	2·513	(2)	2.0256	(3)	2·169	(4)	2.741	
74.	Find of de	l the smallest ecimals using l	positiv Newtor	e root of the	e equation nethod.	$3x^3 - 9x^2$	+ 8 = 0, co	orrect to 4 place	
	(1)	3.2568	(2)	1.2261	(3)	2.2361	(4)	0.8261	
75.	Eval	$\int_{0}^{6} \frac{dx}{1+x^{2}}$	y by u	sing Simpso	on's 3 rule	e. (Choose s	tep size h =	= 1)	_
	(1)	1.4326	(2)	3·1571	(3)	4 ·132	(4)	1.3571	
76.	 The	number of stri	ps req	uired in Sin	pson's $\frac{3}{8}$	rule is a m	ultiple of		
	(1)	1	(2)	2	(3)	3	(4)	6	
77.	Eval	luate the integ	raļ I =	$\int_{3}^{7} \mathbf{x}^2 \cdot \log t$	x . dx, usir	ng Simpson	's $\frac{1}{3}$ rule w	with $h = 1$.	_
	(1)	277.4216	-	·	(2)	177-4816			
	(3)	127.6251			(4)	150.6626			

.

.

.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

78.	As a	a part of ground work for plaster,	dots	are laid on the surface of wall to b
	plas	10 cm vi 10 cm	(0)	20 mm × 20 mm
	(1)	10 mm × 10 mm	(<u>4</u>)	$20 \text{ cm} \times 20 \text{ cm}$
_	(0)		(4)	
79.	A vo vert	ertical member of a frame which i ically is called as	s emp	loyed to sub-divide a window or doo
	(1)	Jamb	(2)	Reveal
	(3)	Transom	(4)	Mullion
80.	Foll	owing paint hardens by evaporation	of thi	mer or solvent :
	(1)	Aluminium paint	(2)	Cellulose paint
	(3)	Asbestos paint	(4)	Silicate paint
81.	Арг	neumatic caisson is a structure used	in fou	ndation work, which is
	(1)	Open at top as well as bottom		·
	(2)	Open at bottom and closed at top		
	(3)	Closed at top as well as bottom		
	(4)	Closed at bottom and open at top		,
82.	By ı	using which materials can resilient f	loors t	e made ?
	(1)	PVC	(2)	Rubber
	(3)	Linoleum	(4)	All of the above
83.	In w	which IS code are details of slump te	st men	tioned ?
	(1)	IS 1060 – 1968	(2)	IS 1199 – 1999
		IS 1000 0000	(4)	TC 1957 1008

84.				21			`	IVI14		
	Which defect in timber is an early sign of decay ?									
	(1)	Heart Shake			(2)	Star Shake				
	(3)	Ring Shake			(4)	Cup Shake				
 85.	 Nor: prov	mally what sl vided ?	nould	be the height	of b	uilding for wh	ich fi	re lifts must be		
	(1)	Above 15 met	ers		(2)	Above 25 met	ers			
·	(3)	Above 40 met	ers		(4)	Above 50 mete	ers			
86.	As mod	per IS 456 – lerate exposure	2000, condi	minimum cen tion used in R.C	nent o C.C. w	content for M2	5 gra	de concrete with		
· .	(1)	250 kg/m ³	(2)	300 kg/m ³	(3)	320 kg/m ³	(4)	340 kg/m ³		
87.	The	water seal in t	he tra	ps varies from						
	(1)	5 to 10 cm	(2)	3.5 to 7.5 cm	(3)	2.5 to 5.0 cm	(4)	3.0 to 7.5 cm		
88.	Spe	cific gravity of	 buildir	ng stones shoul	d be m	ore than		· ·		
	(1)	2.7	(2)	2.9	(3)	3.0	(4)	2.5		
89.	If	cons		t is in excess in	h brick	earth it makes	bricks	s brittle.		
	(1)	Alumina			(2)	Silica				
	(3)	Lime			. (4)	Magnesia				
90.	When a body is subjected to the two mutually perpendicular stresses, $\sigma_x \& \sigma_y$, there the centre of Mohr's circle from the origin is									
	(1)	$\frac{\sigma_{x} + \sigma_{y}}{2}$	(2)	$\frac{\sigma_{x} - \sigma_{y}}{2}$	(3)	$\frac{2\sigma_{x}+\sigma_{y}}{2}$.(4)	$\sigma_x + \sigma_y$		

.

.

•

•.

•

M14

- **91.** What will be the modulus of rigidity, if the value of modulus of elasticity is 200 KN/mm² & Poisson Ratio is 0.25?
 - $(1) \quad 70 \quad (2) \quad 80 \quad (3) \quad 125 \quad (4) \quad 200$
- 92. Due to external loading, the length of member is decreased by dl. The ratio of decrease in length to original length is called
 - (1) Intensity of stress (2) Compressive stress
 - (3) Shear strain (4) Compressive strain
- **93.** A simply supported beam of span 'L' m is carrying a triangular load, varying gradually from zero at supports (i.e. both ends) to W per unit length at the centre of span. What will be the maximum bending moment ?

(1) $\frac{WL^2}{6}$ (2) $\frac{WL^2}{12}$ (3) $\frac{3WL^2}{20}$ (4) $\frac{2WL^2}{9}$

94. The bending equation is written as ______. (1) $\frac{I}{M} = \frac{\sigma}{Y} = \frac{E}{R}$ (2) $\frac{M}{I} = \frac{\sigma^2}{Y} = \frac{E^2}{R^2}$ (3) $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$ (4) $\frac{M^2}{I} = \frac{\sigma^2}{Y} = \frac{E^2}{R}$

95. If a point in a strained material is subjected to two mutually perpendicular stresses, $\sigma_x = 100$ MPa (T) and $\sigma_y = 50$ MPa (C), then what will be the magnitude of maximum shear stress ?

(1) 25 MPa (2) 50 MPa (3) 75 MPa (4) 150 MPa

96. A bar of diameter 30 mm is subjected to a tensile load such that the measured extension on a gauge length of 200 mm is 0.09 mm and the change in diameter is 0.0045 mm. Calculate the Poisson Ratio :

$(1) \frac{1}{3}$	(2) $\frac{1}{4}$	$(3) \frac{1}{5}$	$(4) \frac{1}{6}$
--------------------	-------------------	--------------------	--------------------

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Α

23

97. A point of contraflexure in a bending moment diagram indicates _____

- (1) Negative Bending moment
- (2) Zero shear force

Α

- (3) Bending moment changes sign
- (4) Shear force changes sign

98. A simply supported beam of span *l* is carrying point load W at mid span. What is the deflection at centre of beam ?

(1)	$\frac{Wl^2}{48EI}$	(2)	$\frac{Wl^3}{48EI}$
(3)	$\frac{5}{348} \frac{Wl^3}{EI}$	(4)	$\frac{11}{120} \frac{Wl^3}{EI}$

99. The section modulus of a circular section at an axis passing its CG is

$(1) \frac{\pi d^2}{4}$	$(2) \frac{\pi d^2}{16}$	$(3) \frac{\pi d^3}{16}$	$(4) \frac{\pi d^3}{32}$
--------------------------	---------------------------	---------------------------	---------------------------

100. A cantilever beam AB of length 'l' and subjected to a U.D.L. of intensity 'w' kN/m over a length 'b' is shown in the figure. If EI is constant, then what is the deflection at C?

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

M14

सूचना 🗕 (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमूना प्रश्न

Pick out the correct word to fill in the blank :

(2)

 $(\mathbf{1})$

Q.No. 201. I congratulate you _____ your grand success.

- $(1) \quad \text{for} \tag{2}$
- (3) on (4) about

(4)

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "③" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

at

प्र. क्र. 201.

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

Α