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The Constitution of India

Preamble

 WE, THE PEOPLE OF INDIA, having 
solemnly resolved to constitute India into a 
SOVEREIGN SOCIALIST SECULAR 
DEMOCRATIC REPUBLIC and to secure to 
all its citizens:
 JUSTICE, social, economic and political;
 LIBERTY of thought, expression, belief, faith 
and worship;
 EQUALITY of status and    of opportunity; 
and to promote among them all
 FRATERNITY assuring the dignity of 
the individual and the unity and integrity of the 
Nation;
 IN OUR CONSTITUENT ASSEMBLY this 
twenty-sixth day of November, 1949, do HEREBY 
ADOPT, ENACT AND GIVE TO OURSELVES 
THIS CONSTITUTION.



NATIONAL ANTHEM
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Dear  Students,
It is a matter of pleasure and pride to place this exposition on basic physics in the 

hands  of the young generation. This is not only textbook of physics for standard XI class , but 
embodies material which will be useful for self-study.

This textbook aims to create awareness about Physics. The National Curriculum Framework 
(NCF) was formulated in the year 2005, followed by the State Curriculum Framework (SCF) 
in 2010.  Based on the given two frameworks, reconstruction of the curriculum and preparation 
of a revised syllabus has been undertaken which will be introduced from the academic year 
2019-20. The textbook incorporating the revised syllabus has been prepared and designed by 
the Maharashtra State Bureau of Textbook Production and Curriculum Research, (Balbharati), 
Pune. 

The purpose of the book is to prepare a solid foundation for further studies in physics at 
the standard XII class. Proficiency in science in general and physics in particular is a basic 
requirement for the professional courses such as engineering and medicine etc., apart from 
the graduation courses in science itself. With this point of view , each chapter is prepared with 
elementary level and encompassing the secondary school level physics to the higher secondary 
level. Most of the topics are explained lucidly and in sufficient details, so that the students 
understand them well. A number of illustrative examples and figures are included  to enlighten 
the student proficiency .With this background, the student is expected to solve the exercises 
given at the end of the chapters. For students who want more, Internet sites for many topics have 
been provided. They can enjoy further reading.
 After all, physics is a conceptual subject. Knowledge about physical phenomena 
is gained as a natural consequence of observation, experience and revelation upon problem 
solving. 

The book is written with this mind-set. The curriculum and syllabus conforms to the 
maxims of teaching such as moving from concrete to abstract, known to unknown and from 
part to the whole. For the first time, in this textbook of Physics, various activities have been 
introduced. These activities will not only help to develop understanding the content but also 
provide scope of the for gaining relevant and additional knowledge on your own efforts. A 
detailed information of all concepts is also given for a better understanding of the subject.  
QR Codes have been introduced for gaining additional information, abstracts of chapters and 
practice questions/ activities. 

 The efforts taken to prepare the textbook will not only enrich the learning experiences of 
the students, but also benefit other stakeholders such as teachers, parents as well as candidates 
aspiring for the competitive examinations. 

We look forward to a positive response from the teachers and students.
Our best wishes to all!

Preface



 Dear Teachers,
   We are happy to introduce the revised 

textbook of Physics for Std XI. This book 
is a sincere attempt to follow the maxims 
of  teaching as well  as develop a 
‘constructivist’ approach to enhance the 
quality of learning. The demand for more 
activity based, experiential and innovative 
learning opportunities is the need of the 
hour.  The present curriculum has been 
restructured so as to bridge the credibility 
gap that exists between what is taught and 
what students learn from direct experience 
in the outside world. Guidelines provided 
below will help to enrich the teaching-
learning process and achieve the desired 
learning outcomes.

P To begin with, get familiar with the 
textbook yourself, and encourage the 
students to read each chapter carefully.

P The present book has been prepared for 
constructivist and activity-based teaching, 
including problem solving exercises. 

P Use teaching aids as required for proper 
understanding of the subject.

P Do not finish the chapter in short.
P Follow the order of the chapters strictly as 

listed in the contents because the units are 
introduced in a graded manner to facilitate 
knowledge building.

- For Teachers -
P 'Error in measurements' is an important 

topic in physics. Please ask the students to 
use this in estimating errors in their 
measurements. This must become an 
integral part of laboratory practices.

P Major concepts of physics have a scientific 
base. Encourage group work, learning 
through each other’s help etc. Facilitate 
peer learning as much as possible by 
reorganizing the class structure frequently.

P Do not use the boxes titled ‘Do you know?’ 
for evaluation. However, teachers must 
ensure that students read this extra 
information.

P For evaluation, equal weightage should be 
assigned to all the topics. Use different 
combinations of questions. Stereotype 
questions should be avoided.

P Use QR Code given in the textbook. Keep 
checking the QR Code for updated 
information. Certain important links, websites 
have been given for references. Also a list 
of reference books is given. Teachers as well 
as the students can use these references for 
extra reading and in-depth understanding of 
the subject. 

 Best wishes for a wonderful teaching 
experience!

DISCLAIMER Note : All attempts have been made to contact copy right/s (©) but we have not heard from them. We will 
be pleased to acknowledge the copy right holder (s) in our next edition if we learn from them.

Front Page : Figure shows the LIGO laboratory in the United States of America and the inset shows the trace of 
gravity waves detected upon the merger of two black holes. In the background is the artist's impression of planets 
and galaxies.
Since ages, mankind is awed by the sheer scale of the universe and is trying to understand the laws governing the 
same. Today we observe the events in the universe with highly sophisticated instruments and laboratories such as 
the LIGO project seen on the cover. Picture Credit: Caltech/ MIT/ LIGO laboratory.
Figure Credit : B. P. Abott et al. Physical Review letts 116, 061102, 2016
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Competency Statements
Standard XI

Area/ Unit/ 
Lesson

Competency Statements 
After studying the content in Textbook student …

Units and 
Mathematical 

Tools 

 •  Distinguish between fundamental and derived quantities.
 •  Distinguish between different system of units and their use.
 • Identify methods to be used for measuring lengths and distances of varying magnitudes.
 • Check correctness of physical equations using dimensional analysis.
 • Establish the relation between related physical quantities using dimensional analysis.
 • Find conversion factors between the units of the same physical quantity in two different 

sets of units.
 • Identify different types of errors in measurement of physical quantities and estimate them.
 • Identify the order of magnitude of a given quantity and the significant figures in them.
 • Distinguish between scalar and vector quantities.
 • Perform addition, subtraction and multiplication (scalar and vector product) of vectors.
 • Determine the relative velocity between two objects.
 • Obtain derivatives and integrals of simple functions. 
 • Obtain components of vectors.
 • Apply mathematical tools to analyze physics problems.

Motion and 
Gravitation

 • Visualize motions in daily life in one, two and three dimensions.
 •  Explain the necessity of Newton’s first law of motion.
 •  Categorize various forces of nature into four fundamental forces.
 •  State various conservation principles and use these in daily life situations.
 •  Derive expressions and evaluate work done by a constant force and variable force.
 •  Organize/categorize the common principles between collisions and explosions.
 •  Explain the necessity of defining impulse and apply it to collisions, etc.
 •  Elaborate the limitations of Newton’s laws of motion.
 •  Elaborate different types of mechanical equilibria with suitable examples.
 • Apply the Kepler’s laws of planetary motion to solar system. 
 •  Elaborate Newton’s law of gravitation.
 • Calculate the values of acceleration due to gravity at any height above and depth below 

the earth’s surface. 
 • Distinguish between different orbits of earth’s satellite. 
 • Explain how escape velocity varies from planet. 
  •        Explain weightlessness in a satellite.  

 Properties of 
Matter 

 • Explain the difference between elasticity and plasticity
 •  Identify elastic limit for a given material.
 •  Differentiate between different types of elasticity modules.
 •  Judge the suitability of materials for specific applications in daily life appliances.
 • Identify the role of force of friction in daily life.
 •  Differentiate between good and bad conductors of heat.
 •  Relate underlying physics for use of specific materials for use in thermometers for specific 

applications.

Sound and Optics  •  Apply and relate various parameters related to wave motion.
 •  Compare various types of waves with common features and distinguishing features.
 •  Analytically relate the factors on which the speed of sound and speed of light depends.
 •  Explain the essential factor to describe wave propagation and relate it with phase angle. 
 •  Apply the laws of reflection to light.
 •  Mathematically describe the Doppler effect for sound waves. 
 •  Apply the laws of refraction to common phenomena in daily life like, a mirage or a 

rainbow. 
 •  Identify the defects in images obtained by mirrors and lenses, with their cause and ways of 

reducing or eliminating them.
 •  Explain the construction and use of various optical instruments such as a microscope, a 

telescope, etc.
 •  Relate dispersion of light with colour and apply it analytically with the help of prisms.



 •  Describe dispersive power as a basic property of transparent materials and relate it with 
their refractive indices. 

 • Analyze the time taken to receive an echo and calculate distance to the reflecting object.
 • Explain reverberation and acoustics.

Electricity and 
Magnetism

 •  Distinguish between conductors and insulators.
 •  Apply coulomb’s law and obtain the electric field due to a certain distribution of charges.
 •  Define dipole, obtain the dipolar field.
 •  Relate the drift of electrons in a conductor to resistivity 
 •  Calculate resistivity at various temperature. 
 •  Connect resistors in series and parallel combination.
 •  Compare electric and magnetic fields.
 •  Draw electric and magnetic lines of force.
 •  Obtain magnetic parameters of the Earth.
 •  Solve numerical and analytical problems.

Communication 
and 

Semiconductors 

 • Explain the properties of an electromagnetic wave.
 •  Distinguish between mechanical waves and electromagnetic waves.
 •  Identify different types of electromagnetic radiations from γ- rays to radio waves.
 •  Distinguish between different modes of propagation of EM waves through earth’s 

atmosphere.
 •  Identify different elements of a communication system.
 •  Explain different types of modulation and identify the types of modulation needed in given 

situation.
 •  Distinguish between conductors, insulators and semiconductors based on band structure.
 •       Differentiate between p type and n type semiconductors and their uses.  
 •       Explain working of forward and reverse biased junction.
 •       Explain the working of semiconductor diode. 
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1.1 Introduction: 

Physics is a quantitative science, where 
we measure various physical quantities 
during experiments. In our day to day life, we 
need to measure a number of quantities, e.g., 
size of objects, volume of liquids, amount of 
matter, weight of vegetables or fruits, body 
temperature, length of cloth, etc. A measurement 
always involves a comparison with a standard 
measuring unit which is internationally 
accepted. For example, for measuring the mass 
of a given fruit we need standard mass units 
of 1 kg, 500 g, etc. These standards are called 
units. The measured quantity is expressed in 
terms of a number followed by a corresponding 
unit, e.g., the length of a wire is written as 5 m 
where m (metre) is the unit and 5 is the value of 
the length in that unit. Different quantities are 
measured in different units, e.g. length in metre 
(m), time in seconds (s), mass in kilogram (kg), 
etc. The standard measure of any quantity is 
called the unit of that quantity. 

1.2 System of Units:

In our earlier standards we have come 
across various systems of units namely

 (i)  CGS: Centimetre  Gram Second system

 (ii)  MKS: Metre Kilogram Second system

 (iii) FPS: Foot Pound Second system.

 (iv) SI: System International

The first three systems namely CGS, MKS 
and FPS were used extensively till recently.  In 
1971, the 14th International general conference 
on weights and measures recommended the 
use of ‘International system' of units. This 
international system of units is called the 
SI units. As the SI units use decimal system, 
conversion within the system is very simple and 
convenient.

1. What is a unit?
2. Which units have you used in the laboratory for measuring 
  (i) length (ii) mass (iii) time (iv) temperature?
3. Which system of units have you used?  

Units and Measurements

Can you recall?

1.2.1 Fundamental Quantities and Units:  

The physical quantities which do not 
depend on any other physical quantities for 
their measurements are known as fundamental 
quantities. There are seven fundamental 
quantities: length, mass, time, temperature, 
electric current, luminous intensity and amount 
of substance. 

Fundamental units: The units used to measure 
fundamental quantities are called fundamental 
units. The fundamental quantities, their units 
and symbols are shown in the Table 1.1. 

Table 1.1: Fundamental Quantities with 
their SI Units and Symbols

Fundamental quantity SI units Symbol

1) Length
2) Mass
3) Time
4) Temperature
5) Electric current
6) Luminous Intensity
7) Amount of substance

metre
kilogram
second
kelvin
ampere
candela
mole

m
kg
s
K
A
cd
mol

1.2.2 Derived Quantities and Units: 

In physics, we come across a large number 
of quantities like speed, momentum, resistance, 
conductivity, etc. which depend on some or all 
of the seven fundamental quantities and can be 
expressed in terms of these quantities. These are 
called derived quantities and their units, which 
can be expressed in terms of the fundamental 
units, are called derived units.

For example, 

SI unit of velocity

� � � �Unit of displacement

Unit of time

m

s
m s 1

Unit of momentum = (Unit of mass)×(Unit of 
velocity) 

1.
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   = kg m/s = kg m s-1

The above two units are derived units.

Supplementary units : Besides, the seven 
fundamental or basic units, there are two more 
units called supplementary units: (i) Plane 
angle dθ and (ii) Solid angle dΩ
 (i)  Plane angle (dθ) : This is the ratio of the 

length of an arc of a circle to the radius of 
the circle as shown in Fig. 1.1 (a). Thus 
dθ = ds/r is the angle subtended by the arc 
at the centre of the circle. It is measured 
in radian (rad). An angle θ in radian is 
denoted as θc.  

 (ii) Solid angle (dΩ) : This is the 3-dimensional 
analogue of dθ and is defined as the area 
of a portion of surface of a sphere to  
the square of radius of the sphere. Thus 
dΩ = dA/r2 is the solid angle subtended by 
area ds at O as shown in Fig. 1.1 (b). It 
is measured in steradians (sr). A sphere of 
radius r has surface area 4πr2. Thus, the 
solid angle subtended by the entire sphere 
at its centre is Ω = 4πr2/r2 = 4π sr. 

dθ
O

A

B

ds

r

  Fig 1.1 (a): Plane angle dθ.  

dA

r

O

  Fig 1.1 (b): Solid angle dΩ.
Example 1.1: What is the solid angle subtended 
by the moon at any point of the Earth, given 
the diameter of the moon is 3474 km and its 
distance from the Earth 3.84×108 m.

Solution: Solid angle subtended by the moon 
at the Earth 

 

= 
Area of the disc of the moon

(moon - earth distance)

= 
×(1

2

� ..737×10 )

(3.84×10 )

= 6.425 10  

3 2

5 2

-5� sr

The relation between radian and degree is
π radians = πc = 180°

Do you know ?

1.2.3 Conventions for the use of SI Units: 
 (1) Unit of every physical quantity should be 

represented by its symbol.
 (2)  Full name of a unit always starts with  

smaller letter even if the name is after a 
person, e.g., 1 newton, 1 joule, etc. But 
symbol for unit named after a person 
should be in capital letter, e.g., N after 
scientist Newton, J after scientist Joule, 
etc.

 (3) Symbols for units do not take plural form 
for example, force of 20 N and not 20 
newtons or not 20 Ns.

 (4)  Symbols for units do not contain any full 
stops at the end of recommended letter, 
e.g., 25 kg and not 25 kg..

 (5)  The units of physical quantities in 
numerator and denominator should be 
written as one ratio for example the SI 
unit of acceleration is m/s2 or m s-2 but 
not m/s/s.

 (6)  Use of combination of units and symbols 
for units is avoided when physical 
quantity is expressed by combination of 
two. e.g., The unit J/kg K is correct while 
joule/kg K is not correct. 

 (7) A prefix symbol is used before the symbol 
of the unit.

  Thus prefix symbol and units symbol 
constitute a new symbol for the unit which 
can be raised to a positive or negative 
power of 10. 
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  1ms = 1 millisecond = 10-3s 
  1µs = 1 microsecond = 10-6s 
  1ns = 1 nanosecond = 10-9s 
  Use of double prefixes is avoided when 

single prefix is available 
  10-6s =1µs and not 1mms.
  10-9s = 1ns and not 1mµs  
(8) Space or hyphen must be introduced 

while indicating multiplication of two 
units e.g., m/s should be written as m s-1 
or m-s-1 and Not as ms-1 (because ms will 
be read as millisecond).

1.3 Measurement of Length: 
One fundamental quantity which we have 

discussed earlier is length. To measure the 
length or distance the SI unit used is metre 
(m). In 1960, a standard for the metre based 
on the wavelength of orange-red light emitted 
by atoms of krypton was adopted. By 1983 a 
more precise measurement was developed. 
It says that a metre is the length of the path 
travelled by light in vacuum during a time 
interval of 1/299792458 second. This was 
possible as by that time the speed of light 
in vacuum could be measured precisely as  
c = 299792458 m/s

Some typical distances/lengths are given in 
Table 1.2.

Table 1.2: Some Useful Distances 

Measurement Length in metre

Distance to Andromeda Galaxy (from Earth)
Distance to nearest star (after Sun)  Proxima Centuari (from Earth)
Distance to Pluto (from Earth)
Average Radius of Earth 
Height of Mount Everest
Thickness of this paper
Length of a typical virus 
Radius of hydrogen  atom
Radius of proton 

2×1022 m 
4×1016 m
6×1012 m
6×106 m
9×103 m
1×10-4 m
1×10-8 m
5×10-11 m
1×10-15 m

1.3.1 Measurements of Large Distance:

Parallax method 

Large distance, such as the distance of 
a planet or a star from the Earth, cannot be 
measured directly with a metre scale, so a 
parallax method is used for it.

Let us do a simple experiment to understand 
what is parallax.

Hold your hand in front of you and look at 
it with your left eye closed and then with your 
right eye closed. You will find that your hand 
appears to move against the background. This 
effect is called parallax. Parallax is defined as 
the apparent change in position of an object due 
to a change in the position of the observer. By 
measuring the parallax angle (θ) and knowing 
the distance between the eyes E

1
E

2
 as shown in 

Fig. 1.2, we can determine the distance of the 
object from us, i.e., OP as E

1
E

2
/θ.

P

E
1 O E

2

θ

Fig.1.2: Parallax method for determining 
distance.

As the distances of planets from the Earth 
are very large, we can not use two eyes method 
as discussed here. In order to make simultaneous 
observations of an astronomical object, we 
select two distant points on the Earth. 

Consider two positions A and B on the 
surface of Earth, separated by a straight line at 

O
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distance b as shown in Fig. 1.3. Two observers 
at these two points observe a distant planet S 
simultaneously. We measure the angle ∠ASB 
between the two directions along which the 
planet is viewed at these two points. This angle, 
represented by symbol θ, is the parallax angle. 

 

As the planet is far away, i.e., the distance 
of the planet from the Earth is very large in 
comparison to b, b/D << 1 and, therefore, θ is 
very small.

We can thus consider AB as the arc of 
length b of the circle and D its radius.

AB = b and AS = BS = D and θ  ≅  AB/ D, 
where θ is in radian 

D = b /  θ 

Fig.1.3: Measurement of distances of planets

1.3.2 Measurement of Distance to Stars: 

Sun is the star which is closest to the 
Earth. The next closest star is at a distance of 
4.29 light years. The parallax measured from 
two most distance points on the Earth for stars 
will be too small to be measured and for this 
purpose we measure the parallax between two 
farthest points (i.e. 2 AU apart, see box below) 
along the orbit of the Earth around the Sun (see 
figure in example 1.2 below).   

1.3.3 Measurement of the Size of a Planet or 
a Star: 

If d is the diameter of a planet, the angle 
subtended by it at any single point on the Earth 
is called angular diameter of the planet. Let α 
be the angle between the two directions when 
two diametrically opposite points of the planet 
are viewed through a telescope as shown in Fig. 
1.4. As the  distance D of the planet is large 
(assuming it has been already measured), we 
can calculate the diameter of the planet as

  

�

�

�

�

d

D
d = D       --- (1.2)

For measuring large distances, astronomers 
use the following units. 

1 astronomical unit, (AU) = 1.496×1011m
1 light year = 9.46×1015m 
1 parsec (pc) = 3.08×1016m ≅ 3.26 light 

years

A light year is the distance travelled 
by light in one year. The astronomical unit 
(AU) is the mean distance between the centre 
of the Earth and the centre of the Sun.

A parsec (pc) is the distance from where 
1AU subtends an angle of 1 second of arc.

 

1AU
Sun

1pc

1″

 

Do you know ?

r

D

d

α

Earth 

Planet

Fig. 1.4: Measurement of size of a planet 

1.3.4 Measurement of Very Small Distances: 

When we intend to measure the size of 
the atoms and molecules, the conventional 
apparatus like Vernier calliper or screw guage 
will not be useful. Therefore, we use electron  
microscope or tunnelling electron microscope 
to measure the size of atoms. 

Example 1.2: A star is 5.5 light years away 
from the Earth. How much parallax in arcsec 
will it subtend when viewed from two opposite 

A

B
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points along the orbit of the Earth?

1AU 1AU

Solution: Two opposite points A and B along 
the orbit of the Earth are 2 AU apart. The 
angle subtended by AB at the position of the 
star is = AB/distance of the star from the Earth 

=
2AU

 y

m

m
rad

= 5.75

11

155 5

2 1 496 10

5 5 9 46 10
5 75 10

1

6

.

.

. .
.

l
�

� �
� �

� �

�

�

00 57 297 60 606� � � �.  arcsec

= 1.186  arcsec  

Small distances are measured in units 
of (i) fermi = 1F = 10-15 m in SI system. Thus, 
1F is one femtometre (fm)   (ii) Angstrom = 
1 A0 =10-10 m

For measuring sizes using a microscope 
we need to select the wavelength of light 
to be used in the microscope such that it 
is smaller than the size of the object to be 
measured. Thus visible light (wavelength 
from 4000 A0 to 7000 A0) can measure 
sizes upto about 4000 A0 . If we want to 
measure even smaller sizes we need to use 
even smaller wavelength and so the use 
of electron microscope is necessary. As 
you will study in the XIIth standard, each 
material particle corresponds to a wave. The 
approximate wavelength of the electrons in 
an electron microscope is about 0.6 A0  so 
that one can measure atomic sizes ≈ 1 A0 
using this microscope. 

Do you know ?

Solution: Angle subtended  

θ = 1° 54' = 114' = 114×2.91×10-4 rad 

     = 3.317×10-2 rad

Diameter of the Earth = θ × distance to the 
moon from the Earth 

  = 3.317×10-2×3.84×108 m

  = 1.274×107m

1.4 Measurement of Mass: 

Since 1889, a kilogram was the mass of a 
shiny piece of platinum-iridium alloy kept in a 
special glass case at the International Bureau 
of weights and measures. This definition of 
mass has been modified on 20th May 2019, the 
reason being that the carefully kept platinum-
iridium piece is seen to pick up micro particles 
of dirt and is also affected by the atmosphere 
causing its mass to change. The new measure 
of kilogram is defined in terms of magnitude 
of electric current. We know that electric 
current can be used to make an electromagnet. 
An electromagnet attracts magnetic materials 
and is thus used in research and in industrial 
applications such as cranes to lift heavy 
pieces of iron/steel. Thus the kilogram mass 
can be described in terms of the amount of 
current which has to be passed through an 
electromagnet so that it can pull down one side 
of an extremely sensitive balance to balance the 
other side which holds one standard kg mass.

While dealing with mass of atoms 
and molecules, kg is an inconvenient unit. 
Therefore, their mass is measured in atomic 
mass unit. It will be easy to compare mass of 
any atom in terms of mass of some standard 
atom which has been decided internationally to 
be C12 atom. The (1/12)th mass of an unexcited 
atom of C12 is called atomic mass unit (amu). 

1 amu = 1.660540210-27 kg with an 
uncertainty of 10 in the last two decimal places. 

1.5 Measurement of Time:

The SI unit of time is the second (s). For 
many years, duration of one mean Solar day 
was considered as reference. A mean Solar day 
is the average time interval from one noon to 
the next noon. Average duration of a day is 
taken as 24 hours. One hour is of 60 minutes 

Example 1.3: The moon is at a distance of 
3.84×108 m from the Earth. If viewed from two 
diametrically opposite points on the Earth, the 
angle subtended at the moon is 1° 54'. What is 
the diameter of the Earth?
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and each minute is of 60 seconds. Thus a mean 
Solar day = 24 hours = 246060 = 86400 s. 
Accordingly a second was defined as 1/86400 
of a mean Solar day.

It was later observed that the length of a 
Solar day varies gradually due to the gradual 
slowing down of the Earth’s  rotation. Hence, 
to get more standard and nonvarying (constant) 
unit for measurement of time, a cesium atomic 
clock is used. It is based on periodic vibrations 
produced in cesium atom. In cesium atomic 
clock, a second is taken as the time needed 
for 9,192,631,770 vibrations of the radiation 
(wave) emitted during a transition between two 
hyperfine states of Cs133 atom. 

quantities. For convenience, the basic quantities 
are represented by symbols as ‘L’ for length, 
‘M’ for mass, ‘T’ for time, ‘K’ For temperature, 
‘I’ for current, ‘C’ for luminous intensity and 
‘mol’ for amount of mass.

The dimensions of a physical quantity 
are the powers to which the concerned 
fundamental units must be raised in order to 
obtain the unit of the given physical quantity.

When we represent any derived quantity 
with appropriate powers of symbols of the 
fundamental quantities, then such an expression 
is called dimensional formula. This dimensional 
formula is expressed by square bracket and no 
comma is written in between any of the symbols. 

Illustration:

(i) Dimensional formula of velocity  

  
Velocity = 

displacment

time

Dimensions of velocity� � �[L]

[T]
[L M T ]1 0 1

ii) Dimensional formula of velocity gradient

velocity gradient =
velocity

distance

Dimensions of velocity gradient

 � �
�

�[LT ]

[ ]
[L M T ]

1
0 0 1

L
iii) Dimensional formula for charge.

charge = current time

Dimensions of charge = [I] [T] = [L0M0T1I1]

Table 1.3: Some Common Physical Quantities their, SI Units and Dimensions

S. 
No

Physical 
quantity

Formula SI unit Dimensional 
formula

1

2

3

4

5

6

7

8

Density

Acceleration

Momentum

Force

Impulse

Work

Kinetic Energy

Pressure

ρ = M/V

a = ν/t

P = mν
F = ma

J = F. t

W = F.s

KE = 1/2 mν2

P = F/A

kilogram per cubic metre (kg/m3)

metre per second square (m/s2) 

kilogram metre per second (kg m/s) 

kilogram metre per second square 
(kg m/s2) or newton (N)

newton second (Ns)

joule (J)

joule (J)

kilogram per metre second square 
(kg/ms2)

[L-3M1T°]

[L1M°T-2]

[L1M1T-1]

[L1M1T-2]

[L1M1T-1]

[L2M1T-2]

[L2M1T-2]

[L-1M1T-2]

Why is only carbon used and not any 
other element for defining atomic mass unit? 
Carbon 12 (C12) is the most abundant isotope 
of carbon and the most stable one. Around 
98% of the available carbon is C12 isotope. 

Earlier, oxygen and hydrogen were used 
as the standard atoms. But various isotopes 
of oxygen and hydrogen are present in higher 
proportion and therefore it is more accurate 
to use C12.

Do you know ?

1.6 Dimensions and Dimensional Analysis:

As mentioned earlier, a derived physical 
quantity can be expressed in terms of some 
combination of seven basic or fundamental 
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Table 1.3 gives the dimensions of 
various physical quantities commonly used in 
mechanics. 

1.6.1 Uses of Dimensional Analysis: 

 (i)  To check the correctness of physical 
equations: In any equation relating 
different physical quantities, if the 
dimensions of all the terms on both the 
sides are the same then that equation is 
said to be dimensionally correct. This is 
called the principle of homogeneity of 
dimensions. Consider the first equation of 
motion.

  v = u + at

  Dimension of  L.H.S = [v] = [LT-1]

    [u] =[LT-1]

    [at] = [LT-2] [T] = [LT-1]

  Dimension of R.H.S= [LT-1]+ [LT-1]

  [L.H.S] = [R.H.S] 

  As the dimensions of L.H.S and R.H.S 
are the same, the given equation is 
dimensionally correct.

 (ii) To establish the relationship between 
related physical quantities: The period 
T of oscillation of a simple pendulum 
depends on length l and acceleration due 
to gravity g. Let us derive the relation 
between T, l, g : 

  Suppose T ∝ la 

  and T ∝ gb 

        ... T ∝ lagb 

         T = k lagb,
  where k is constant of proportionality and 

it is a dimensionless quantity and a and b 
are rational numbers. Equating dimensions 
on both sides, 

  [M0L0T1] = k [L1]a [LT-2]b 

                = k [La+b T-2b]

    [L0T1]  = k [La+bT-2b] 

Comparing the dimensions of the 
corresponding quantities on both the sides we 
get

a + b = 0

∴ a = -b

and

-2b=1

∴b = -1/2

∴a = -b = -(-1/2)

∴ a = 1/2

∴ T = k l1/2 g -1/2 

∴T = k l / g

The value of k is determined experimentally 
and is found to be 2π

�T = 2 l / g�

 (iii) To find the conversion factor between 
the units of the same physical quantity 
in two different systems of units: Let us 
use dimensional analysis to determine the 
conversion factor between joule (SI unit 
of work) and erg (CGS unit of work).

  Let 1 J = x erg

  Dimensional formula for work is [M1L2T-2] 
Substituting in the above equation, we can 
write

  

[M L T ] =  [M L T ]

= 
[M L T ] 

[M L T ]

1
1

1
2

1
-2

2
1

2
2

2
-2

1
1

1
2

1
-2

2
1

2
2

2
-2

x

x 

oor   , x �
�

�
�

�

�
�
�

�
�

�

�
�
�

�
�

�

�
�

�
M

M

L

L

T

T

1

2

1

2

1

2

1 2 2

  where suffix 1 indicates SI units and 2 
indicates CGS units.

  In SI units, L, M,
 
T are expressed in m, 

kg and s and in CGS system L, M,
 
T are 

represented in cm, g and s respectively.

  

� �
�

�
�

�

�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�

�
�

�

�
�

  
kg

g

m

cm

s

s

or  
g

g

2 -2

x

x

1

3

1

10 100( )
ccm

cm

   

  1 joule = 10 erg7

�
�
�

�
�
�

� � �

�

�
2

2

3 4 7

1

10 10 10

( )

( ) ( )x

  
Example 1.4: A calorie is a unit of heat and it 
equals 4.2 J, where 1 J = kg m2 s-2. A distant 
civilisation employs a system of units in which 
the units of mass, length and time are α kg, β m 
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and γ s. Also J' is their unit of energy. What will 
be the magnitude of calorie in their units?
Solution:  Let us write the new units as A, B 
and C for mass, length and time respectively. 
We are given

1 A =  α kg
1 B = β m
1 C = γ s
1 cal = 4.2 J = 4.2 kg m2 s-2 

= 4.2
A B C

=
4.2 

  AB  C

=
4.2 

2 -2

2

2
2 -2

2

� � �

�
��

�
�

�
�
�

�
�
�
�

�
�

�

�
�
�

�
�

�

�
�

�� 2
 J�

Thus in the new units, 1 calorie is =
4 2 2

2

. �
��

 J�  

1.6.2 Limitations of Dimensional Analysis: 

 1)  The value of dimensionless constant can 
be obtained with the help of experiments 
only.

 2)  Dimensional analysis can not be used to 
derive relations involving trigonometric, 
exponential, and logarithmic functions as 
these quantities are dimensionless.

 3)  This method is not useful if constant of 
proportionality is not a dimensionless 
quantity. 

  Illustration : Gravitational force between 
two point masses is directly proportional 
to product of the two masses and inversely 
proportional to square of the distance 
between the two

   

� �

�

F
m m

r
   

Let G
m m

r

1 2
2

1 2
2

F

  The constant of proportionality 'G' is NOT 
dimensionless. Thus earlier method will 
not work.

 4)  If the correct equation contains some more 
terms of the same dimension, it is not 
possible to know about their presence using 
dimensional equation. For example, with 

standard symbols, the equation S at= 21

2
 

is dimensionally correct. However, the 

complete equation is S = ut + at
1

2
2      

1.7 Accuracy, Precision and Uncertainty in 
Measurement:

Physics is a science based on observations 
and experiments. Observations of various 
physical quantities are made during an 
experiment. For example, during the 
atmospheric study we measure atmospheric 
pressure, wind velocity, humidity, etc. All the 
measurements may be accurate, meaning that 
the measured values are the same as the true 
values. Accuracy is how close a measurement 
is to the actual value of that quantity. These 
measurements may be precise, meaning that 
multiple measurements give nearly identical 
values (i.e., reproducible results). In actual 
measurements, an observation may be both 
accurate and precise or neither accurate nor 
precise. The goal of the observer should be to 
get accurate as well as precise measurements.

Possible uncertainties in an observation 
may arise due to following reasons:

1) Quality of instrument used.

2) Skill of the person doing the experiment.

3) The method used for measurement.

4) External or internal factors affecting the 
result of the experiment.

If ten students are asked to measure the 
length of a piece of cloth up to a mm, using a 
metre scale, do you think their answers will 
be identical? Give reasons.  

Can you tell?

1.8 Errors in Measurements:

Faulty measurements of physical quantity 
can lead to errors. The errors are broadly divided 
into the following two categories :

a) Systematic errors : Systematic errors are 
errors that are not determined by chance but 
are introduced by an inaccuracy (involving 



9

either the observation or measurement process) 
inherent to the system. Sources of systematic 
error may be due to imperfect calibration of the 
instrument, and sometimes imperfect method of 
observation.

Each of these errors tends to be in one 
direction, either positive or negative. The 
sources of systematic errors are as follows:

 (i)  Instrumental error: This type of error 
arises due to defective calibration of an 
instrument, for example an incorrect 
zeroing of an instrument will lead to such 
kind of error ('zero' of a thermometer not 
graduated at proper place, the pointer 
of weighting balance in the laboratory 
already indicating some value instead of 
showing zero when no load is kept on it, 
an ammeter showing a current of 0.5 amp 
even when not connected in circuit, etc).

 (ii) Error due to imperfection in 
experimental technique: This is an error 
due to defective setting of an instrument. 
For example the measured volume of a 
liquid in a graduated tube will be inaccurate 
if the tube is not held vertical. 

 (iii) Personal error: Such errors are 
introduced due to fault of the observer. 
Bias of the observer, carelessness in 
taking observations etc. could result in 
such errors. For example, while measuring 
the length of an object with a ruler, it is 
necessary to look at the ruler from directly 
above. If the observer looks at it from an 
angle, the measured length will be wrong 
due to parallax.

  Systematic errors can be minimized by 
using correct instrument, following proper 
experimental procedure and removing 
personal error.

b) Random errors: These are the errors which 
are introduced even after following all the 
procedures to minimize systematic errors. These 
type of errors may be positive or negative. These 
errors can not be eliminated completely but we 
can minimize them by repeated observations 
and then taking their mean (average). Random 
errors occur due to variation in conditions in 

which experiment is performed. For example, 
the temperature may change during the course 
of an experiment, pressure of any gas used in 
the experiment may change, or the voltage of 
the power supply may change randomly, etc.

1.8.1 Estimation of error: 

Suppose the readings recorded repeatedly 
for a physical quantity during a measurement 
are 

a
1
, a

2
, a

3
, ................a

n
 .

Arithmetic mean a
mean  

is given by

a = 
a + a + a + ................+ a

n

a = 
n

a

mean
1 2 3 n

mean i
i=1

n1 ∑ --- (1.3)

This is the most probable value of the 
quantity. The magnitude of the difference 
between mean value and each individual value 
is called absolute error in the observations.

Thus for ‘a
1
’, the absolute error ∆a

1
 is 

given by

�

�

a

a

1 1

2

2 2

 = |

for 

  

and so for a  it wn

a a |,

a ,

| a a |

mean

mean

�

� �

iill be

 �an n� �| a a |mean

The arithmetic mean of all the absolute 
errors is called mean absolute error in the 
measurement of the physical quantity.

    

�
� � �

�

a
a a a

a

mean

i

=
n

           
n

n

i=1

n

1 2

1

� � �

� �

........

  
--- (1.4)

The measured value of the physical 
quantity a can then be represented by 

a = a
mean

 ± ∆a
mean

 which tells us that 
the actual value of ‘a’ could be between  
a

mean
 - ∆a

mean
  and a

mean
 + ∆a

mean
. The ratio of 

mean absolute error to its arithmetic mean 
value is called relative error.

   
--- (1.5)
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When relative error is represented as 
percentage it is called percentage error.

Percentage error = ean

mean

�am

a
�100

 
--- (1.6)

resistance.    

a) Errors in sum and in difference: 

Suppose two physical quantities A 
and B have measured values A ± ∆A and  
B ± ∆B, respectively, where ∆A and ∆B are 
their mean absolute errors. We wish to find the 
absolute error ∆Z in their sum. 

Z=A+B

Z ± ∆Z = (A ± ∆A)+(B ± ∆B)

            = (A+B) ± ∆A ± ∆B

± ∆Z = ± ∆A ± ∆B, 

For difference, i.e., if Z = A-B,

Z ± ∆Z = (A ± ∆A)-(B ± ∆B)

            = (A-B) ± ∆A± ∆B

± ∆Z = ± ∆A± ∆B, 

There are four possible values for ∆Z, 
namely (+ ∆A - ∆B), (+∆A+∆B), (-∆A-∆B), 
(-∆A+∆B). Hence maximum value of absolute 
error is ∆Z = ∆A+∆B in both the cases. 

When two quantities are added or 
subtracted, the absolute error in the final result 
is the sum of the absolute errors in the individual 
quantities.

b) Errors in product and in division: 

Suppose Z=AB and measured values of A 
and B are (A ± ∆A) and (B ± ∆B) Then 

Z ± ∆Z= (A ± ∆A) (B ± ∆B)

= AB ± A∆B ± B∆A ± ∆A∆B

Dividing L.H.S by Z and R.H.S. by AB we 
get

1 1��
�
�

�
�
� � � � � �

�
�

�
�
�
�
�
�

�
�
�

�

�
�

�

�
�

� � � � �z

z

B

B

A

A

A

A

B

B

Since ∆A/A and ∆B/B are very small we 
shall neglect their product. Hence maximum 
relative error in Z is

 

� � �Z

Z

A

A

B

B
� �

  
--- (1.7)

This formula also applies to the division of 
two quantities. 

Thus, when two quantities are multiplied 
or divided, the maximum relative error in the 
result is the sum of relative errors in each 
quantity.

Example 1.5: The radius of a sphere measured 
repeatedly yields values 5.63 m, 5.54 m, 5.44 
m, 5.40 m and 5.35 m. Determine the most 
probable value of radius and the mean absolute, 
relative and percentage errors.

Solution: Most probable value of radius is its 
arithmetic mean       

 

�
� � � �

�

5 63 5 54 5 44 5 40 5 35

5
5 472

. . . . .

.

m

 m

Mean absolute error 

 

�

� � �

� � � �

� �

1

5

5 63 5 472 5 54 5 472

5 44 5 472 5 40 5 472

5 35 5 47

. . . .

. . . .

. .

 

 22

0 452

5
0 0904

�

�
�

�
�

�

�
�

�
�

� �

m

 m 
.

.

Relative error = =
0 0904

5 472
0 017

.

.
.

          % error = 1.7%

1.8.2 Combination of errors:

When we do an experiment and measure 
various physical quantities associated with 
the experiment, we must know how the errors 
from individual measurement combine to give 
errors in the final result. For example, in the 
measurement of the resistance of a conductor 
using Ohms law, there will be an error in the 
measurement of potential difference and that of 
current. It is important to study how these errors 
combine to give the error in the measurement of 

Perform an experiment using a Vernier 
callipers of least count 0.01cm to measure 
the external diameter of a hollow cylinder. 
Take 3 readings at different position on the 
cylinder and find (i) the mean diameter (ii) the 
absolute mean error and (iii) the percentage 
error in the measurement of diameter. 

Activity :
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c) Errors due to the power (index) of 
measured quantity:

Suppose

 

Z = A = A.A.A

Z

Z

A

A

A

A

A

A

3

� � � �
� � �

 

from the multiplication rule above.

Hence the relative error in Z =A3 is three 
times the relative error in A. So if Z = An

 

� �Z

Z
n

A

A
�

    
--- (1.8)

In general, if  Z =
A B

C
Z

Z
p

A

A
q

B

B
r

C

C

p q

r

� � � �
� � �  --- (1.9)

The quantity in the formula which has 
large power is responsible for maximum error.

Example 1.6: In an experiment to determine 
the volume of an object, mass and density are 
recorded as m = (5 ± 0.15) kg and ρ = (5 ± 0.2) 
kg m-3 respectively. Calculate percentage error 
in the measurement of volume.

Solution : We know,

  

Density = 
Mass

Volume

 = 
Mass

Density

M
� �Volume

Percentage err

�

oor in volume =
m

m

                          

� �
� �

�
�
�

�
�
�

�
�

100

                   =
0.15

5

                  

� ��
�
�

�
�
�

0 2

5
100

.

                           = 

              

0 03 0 04 100. .� �� �
                               = 0 07 100 7. %� �� �

Example 1.7: The acceleration due to gravity  is 
determined by using a simple pendulum of length  
l = (100 ± 0.1) cm. If its time period is T = (2 ± 
0.01) s, find the maximum percentage error in 
the measurement of g. 
Solution: The time period of oscillation of a 
simple pendulum is given by 

 
T = 2

l

g
π

Squaring both sides

T =4 l / g

g =4
l

T
T T

2 2

2
2

�

��

Now = 0.1, = 100 cm,  = 0.01s, = 2 s

P

� �l l

eercentage error =
100

                           

�

� �

g

g

l

�

� �
l 2 TT

T
�
�
�

�
�
��

� �
��

�
�

100

0 2 0 01
                           

l

l00 2

. . ��
�
��

� � � �

100

0 001 0 01 100 1 1                           

Pe

( . . ) .

rrcentage error in measurement of  is 1.1% g

1.9 Significant Figures:

In the previous sections, we have studied 
various types of errors, their origins and the 
ways to minimize them. Our accuracy is limited 
to the least count of the instrument used during 
the measurement. Least count is the smallest 
measurement that can be made using the given 
instrument. For example with the usual metre 
scale, one can measure 0.1 cm as the least value. 
Hence its least count is 0.1cm.

Suppose we measure the length of a metal 
rod using a metre scale of least count 0.1cm. 
The measurement is done three times and the 
readings are 15.4, 15.4, and 15.5 cm. The most 
probable length which is the arithmetic mean as 
per our earlier discussion is 15.43. Out of this 
we are certain about the digits 1 and 5 but are 
not certain about the last 2 digits because of the 
least count limitation.

The number of digits in a measurement 
about which we are certain, plus one additional 
digit, the first one about which we are not certain 
is known as significant figures or significant 
digits.

Thus in above example, we have 3 
significant  digits 1, 5 and 4.

The larger the number of significant figures 
obtained in a measurement, the greater is the 
accuracy of the measurement. If one uses the 
instrument of smaller least count, the number of 
significant digits increases.
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Rules for determining significant figures

 1)  All the nonzero digits are significant, 
for example if the volume of an object is 
178.43 cm3, there are five significant digits 
which are 1,7,8,4 and 3. 

 2) All the zeros between two nonzero digits 
are significant, eg., m = 165.02 g has 5 
significant digits.

 3)  If the number is less than 1, the zero/zeroes 
on the right of the decimal point and to 
the left of the first nonzero digit are not 
significant e.g. in 0.001405, the underlined 
zeros are not significant. Thus the above 
number has four significant digits.

 4) The zeros on the right hand side of the last 
nonzero number are significant (but for 
this, the number must be written with a 
decimal point), e.g. 1.500 or 0.01500  have 
both 4 significant figures each.

On the contrary, if a measurement yields 
length L given as

L = 125 m = 12500 cm = 125000 mm, it 
has only three significant digits.

To avoid the ambiguities in determining the 
number of significant figures, it is necessary to 
report every measurement in scientific notation 
(i.e., in powers of 10) i.e., by using the concept 
of order of magnitude.

The magnitude of any physical quantity can 
be expressed as A×10n where ‘A’ is a number 
such that 0.5 ≤ A<5 and ‘n’ is an integer called 
the order of magnitude.

(i) radius of  Earth  = 6400 km  

    = 0.64×107m 

The order of magnitude is 7 and the number 
of significant figures are 2.

(ii) Magnitude of the charge on electron e 
= 1.6×10-19 C

Here the order of magnitude is -19 and the 
number of significant digits are 2. 

 1.  videolectures.net/mit801f99_lewin_lec01/
 2.  hyperphysics.phy-astr.gsu.edu/hbase/

hframe.html

Internet my friend

 Definitions of SI Units
Till May 20, 2019 the kilogram did not have 
a definition; it was mass of the prototype 
cylinder kept under controlled conditions 
of temperature and pressure at the SI 
museum at Paris. A rigorous and meticulous 
experimentation has shown that the mass of 
the standard prototype for the kilogram has 
changed in the course of time. This shows 
the acute necessity for standardisation of 
units. The new definitions aim to improve 
the SI without changing the size of any 
units, thus ensuring continuity with existing 
measurements. In November 2018, the 
26th General Conference on Weights and 
Measures (CGPM) unanimously approved 
these changes, which the International 
Committee for Weights and Measures 
(CIPM) had proposed earlier that year. These 
definitions came in force from 20 May 2019.
 (i) As per new SI units, each of the seven 

fundamental units (metre, kilogram, etc.) 
uses one of the following 7 constants 
which are proposed to be having exact 
values as given below:

  The Planck constant, 
  h = 6.62607015 × 10−34 joule-second 
  (J s or kg m2 s-1).
  The elementary charge, 
  e = 1.602176634 × 10−19 coulomb (C or 

A s).
  The Boltzmann constant, 
  k = 1.380649 × 10−23 joule per kelvin  

(J K−1 or kg m2 s-2 K-1).
  The Avogadro constant (number), 
  N

A
 = 6.02214076 × 1023 reciprocal mole 

(mol−1).
  The speed of light in vacuum, 
  c = 299792458 metre per second (m s−1).
  The ground state hyperfine structure 

transition frequency of Caesium-133 
atom, 

	 	 Δν
Cs

 = 9192631770 hertz (Hz or s-1).
  The luminous efficacy of monochromatic
  radiation of frequency 540 × 1012 Hz,  K

cd
 

  = 683 lumen per watt (lm⋅W−1) = 683 cd 
sr s3 kg-1 m-2, where sr is steradian; the SI 
unit of solid angle.
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 (ii) Definitions of the units second and mole 
are based only upon their respective 
constants, for example (a) the second 
uses ground state hyperfine structure 
transition frequency of Caesium-133 
atom to be exactly 9192631770 hertz. 
Thus, the second is defined as 
9192631770 periods of that transition, 
(b) the mole uses Avogadro’s number 
to be N

A
 = 6.02214076 × 1023. Thus, one 

mole is that amount of substance which 
contains exactly 6.02214076 × 1023 
molecules.

 (iii) Definitions of all the other fundamental 
units use one constant each and at least 
one other fundamental unit, for example, 
the metre makes use of speed of light in 
vacuum as a constant and second as 
fundamental unit. Thus, metre is defined 
as the distance traveled by the light in 
vacuum in exactly 1/299792458 second.

 (iv) The figures show the dependency of 
various units upon their respective 
constants and other units (wherever 

used). The arrows arriving at that unit 
refer to the constant and the fundamental 
unit (or units, wherever used) for defining 
that unit. The arrows going away from a 
unit indicate other units which use this 
unit for their definition. 

For example, as described above, in fig (a)  
i) the arrows directed to metre are from second 
and c. The arrows going away from the metre 
indicate that the metre is used in defining 
the kilogram the candela and the kelvin,  
(ii) the newly defined unit kilogram uses 
Planck constant, the metre and the second, 
while the kilogram itself is used in defining 
the kelvin and the candela. This definition 
relates the kilogram to the equivalent mass of 
the energy of a photon given its frequency, 
via the Planck constant.

Figure (a) refers to new definitions while 
the figure (b) refers to the corresponding 
definitions before 20 May 2019. Interested 
students may compare them to know which 
definitions are modified and how.

Fig (a) New SI Fig (b) Old SI 
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Exercises Exercises

1.  Choose the correct option.
 i)  [L1M1T-2] is the dimensional formula for 
  (A) Velocity (B) Acceleration 

(C) Force  (D) Work
 ii)  The error in the measurement of the 

sides of a rectangle is 1%. The error in 
the measurement of its area is

  (A) 1%  (B) 1/2% 
  (C) 2%  (D) None of the above.
 iii)  Light year is a unit of 
  (A) Time  (B) Mass
  (C) Distance (D) Luminosity
 iv)  Dimensions of kinetic energy are the 

same as that of 
  (A) Force  (B) Acceleration 

(C) Work  (D) Pressure
 v) Which of the following is not a 

fundamental unit?
  (A) cm   (B) kg   
  (C) centigrade  (D) volt 
2.  Answer the following questions. 
 i)  Star A is farther than star B. Which star 

will have a large parallax angle?
 ii)  What are the dimensions of the quantity 

l l g/ , l being the length and g the 
acceleration due to gravity?

 iii) Define absolute error, mean absolute 
error, relative error and percentage error.

 iv) Describe what is meant by significant 
figures and order of magnitude.

 v) If the measured values of two quantities 
are A ± ∆A and B ± ∆B, ∆A and ∆B 
being the mean absolute errors. What is 
the maximum possible error in A ± B? 
Show that if Z

A

B
=

  

  

� � �Z

Z

A

A

B

B
� �

 vi) Derive the formula for kinetic energy of 
a particle having mass m and velocity v 
using dimensional analysis 

3.  Solve numarical examples.  
 i) The masses of two bodies are measured 

to be 15.7 ± 0.2 kg and 27.3 ± 0.3 kg. 
What is the total mass of the two and the 
error in it? 

         [Ans : 43 kg, ± 0.5 kg]
 ii)   The distance travelled by an object in 

time (100 ± 1) s is (5.2 ± 0.1) m. What is 
the speed and it's relative error? 

    [Ans : 0.052 ms-1, ± 0.0292 ms-1]
 iii)  An electron with charge e enters a 

uniform. magnetic field B
��

 with a 
velocity v



. The velocity is perpendicular 
to the magnetic field. The force on the 
charge e is given by  

  | F Bev


|=  Obtain the dimensions of B
��

.
               [Ans: [L0M1T -2I-1]]
 iv)  A large ball 2 m in radius is made up of 

a rope of square cross section with edge 
length 4 mm. Neglecting the air gaps in 
the ball, what is the total length of the 
rope to the nearest order of magnitude? 
     [Ans : ≈106 m = 103km]

 v)  Nuclear radius R has a dependence on 
the mass number (A) as R =1.3×10-

16A1/3 m. For a nucleus of mass number 
A=125, obtain the order of magnitude of 
R expressed in metre.

                 [Ans : -15]
 vi)  In a workshop a worker measures the 

length of a steel plate with a Vernier 
callipers having a least count 0.01 cm. 
Four such measurements of the length 
yielded the following values: 3.11 cm, 
3.13 cm, 3.14 cm, 3.14 cm. Find the 
mean length, the mean absolute error 
and the percentage error in the measured 
value of the length.   

    [Ans:  3.13 cm,  0.01 cm,  0.32%]
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 vii) Find the percentage error in kinetic 
energy of a body having mass 60.0 ± 
0.3 g moving with a velocity 25.0 ± 0.1 
cm/s.  

               [Ans: 1.3%]
 viii) In  Ohm's experiments , the values of 

the unknown resistances were found 
to be 6.12 Ω , 6.09 Ω, 6.22 Ω, 6.15 
Ω. Calculate the mean absolute error, 
relative error and percentage error in 
these measurements. 

              [Ans: 0.04 Ω ,0.0065  Ω , 0.65%] 
 ix) An object is falling freely under the 

gravitational force. Its velocity after 
travelling a distance h is v. If v depends 
upon gravitational acceleration g and 
distance, prove with dimensional 
analysis that v = k gh  where k is a 
constant.

 x) v v� �
�

�at
b

t c
� 0  is a dimensionally valid  

  equation. Obtain the dimensional 
formula for a, b and c where v is velocity, 
t is time and v

0
 is initial velocity.

    [Ans: a- [L1M°T-2], b- [L1M°T°], 
              c- [L°M°T1] ]
 xi) The length, breadth and thickness of 

a rectangular sheet of metal are 4.234 
m, 1.005 m, and 2.01 cm respectively. 
Give the area and volume of the sheet to 
correct significant figures.

       [Ans: 4.255 m2, 8.552 m3]

 xii) If the length of a cylinder is l = 
(4.00±0.001) cm, radius r = (0.0250 
±0.001) cm and mass m = (6.25±0.01) 
gm. Calculate the percentage error in the 
determination of density.

          [Ans: 8.185% ]
 xiii)  When the planet Jupiter is at a distance of 

824.7 million kilometers from the Earth, 
its angular diameter is measured to be 
35.72" of arc. Calculate the diameter of 
the Jupiter.

           [Ans: 1.428×105 km ]
 xiv) If the formula for a physical quantity is

   X
a b

c d
=

4 3

1 3 1 2/ /
 and if the percentage error 

   in the measurements of a, b, c and d 
are 2%, 3%, 3%  and 4%  respectively. 
Calculate percentage error in X.

               [Ans: 20% ]
 xv) Write down the number of significant 

figures in the following: 0.003 m2, 
0.1250 gm cm-2, 6.4 x 106 m, 1.6 x 10-19 
C,  9.1 x 10-31 kg.

               [Ans: 1, 4, 2, 2, 2 ]
 xvi) The diameter of a sphere is 2.14 cm. 

Calculate the volume of the sphere to the 
correct number of significant figures.

        [Ans: 5.13 cm3 ]

***
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2.1 Introduction:  

You will need certain mathematical tools 
to understand the topics covered in this book. 
Vector analysis and elementary calculus are 
two among these. You will learn calculus in 
details, in mathematics, in the XIIth standard. 
In this Chapter, you are going to learn about 
vector analysis and will have a preliminary 
introduction to calculus which should be 
sufficient for you to understand the physics that 
you will learn in this book.

2.2 Vector Analysis:

 In the previous Chapter, you have studied 
different aspects of physical quantities like 
their division into fundamental and derived 
quantities and their units and dimensions. 
You also need to understand that all physical 
quantities may not be fully described by their 
magnitudes and units alone. For example if you 
are given the time for which a man has walked 
with a certain speed, you can find the distance 
travelled by the man, but you cannot find out 
where exactly the man has reached unless 
you know the direction in which the man has 
walked.

Therefore, you can say that some physical 
quantities, which are called scalars, can be 
described with magnitude alone, whereas some 
other physical quantities, which are called 
vectors, need to be described with magnitude 
as well as direction. In the above example the 
distance travelled by the man is a scalar quantity 
while the final position of the man relative to 
his initial position, i.e., his displacement can be 
described by magnitude and direction and is a 
vector quantity.  In this  Chapter  you will study 
different aspects of scalar and vector quantities. 

2.2.1 Scalars: 

 Physical quantities which can be completely 

Mathematical Methods

1. What is the difference between a scalar and a vector?
2. Which of the following are scalars or vectors? 
  (i) displacements (ii) distance travelled (iii) velocity 
  (iv) speed (v) force (vi) work done (vii) energy

Can you recall?

2.

described by their magnitude are called scalars, 
i.e. they are specified by a number and a unit. 
For example when we say that a given metal 
rod has a length 2 m, it indicates that the rod 
is two times longer than a certain standard unit 
metre. Thus the number 2 is the magnitude 
and metre is the unit; together they give us a 
complete idea about the length of the rod. Thus 
length is a scalar quantity. Similarly mass, time, 
temperature, density, etc., are examples of 
scalars. Scalars can be added or subtracted by 
rules of simple algebra.

2.2.2 Vectors:

Physical quantities which need magnitude 
as well as direction for their complete 
description are called vectors. Examples of 
vectors are displacement, velocity, force etc.

A vector can be represented by a directed 
line segment or by an arrow. The length of the 
line segment drawn to scale gives the magnitude 
of the vector, e.g., displacement of a body from 
P to Q can be represented as P  Q, 
where the starting point P is called the tail 
and the end point Q (arrow head) is called the 
head of the vector. Symbolically we write it as  
PQ
� ��

. Symbolically vectors are also represented 
by a single capital letter with an arrow above 
it, e.g., X A

��� ��
 ,  , etc. Magnitude of a vector X

���
 is 

written as | X
���

|.

Let us see a few examples of different 
types of vectors.

 (a)  Zero vector (Null vector): A vector 
having zero magnitude with a particular 
direction (arbitrary) is called zero vector. 

Symbolically it is represented as 0


. 

  (1) Velocity vector of a stationary particle 
is a zero vector.

  (2) The acceleration vector of an object 
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moving with uniform velocity is a zero 
vector.

 (b)  Resultant vector: The resultant of two or 
more vectors is that single vector, which 
produces the same effect, as produced by 
all the vectors together.

 (c)  Negative vector (opposite vector): A 
negative vector of a given vector is a 
vector of the same magnitude but opposite 
in direction to that of the given vector.

In Fig. 2.1, B


 is a negative vector to A


. 

 

A

B

Fig. 2.1: Negative vector. 

 (d)  Equal vector: Two vectors A and B 
representing same physical quantity are 
said to be equal if and only if they have 
the same magnitude and direction.  Two 
equal vectors are shown in Fig. 2.2.

 

A

B

Fig. 2.2: Equal vectors.

 (e)  Position vector: A vector which gives 
the position of a particle at a point with 
respect to the origin of a chosen co-
ordinate system is called the position 
vector of the particle. 

Fig 2.3: Position vector.

In Fig 2.3,  = OP
� ��

 is the position vector of 
the particle present at P. 

 (f)  Unit vector: A vector having unit 
magnitude in a given direction is called 

a unit vector in that direction. If M
��

 
is a non-zero vector i.e. its magnitude 
M =| M |

���
 is not zero, the unit vector along  

M
��

 is written as u M
  and is given by

M = u MM

��� �     --- (2.1)

or,  u =
M

M
M
�

���
    --- (2.2)

Hence u M
  has magnitude unity and has the 

same direction as that of M
��

. We use i , j , 
and k , respectively, as unit vectors along the 
x, y and z directions of a rectangular (three 
dimensional) coordinate system. 

u = i, u = j   u = k

i =
x

x
, j =

y

y
  k =

z

x y z

 

� � � � � �

�
�
�
�

�
�

and

and∴
z

   --- (2.3)

Here X
��

, y
��

and z


 are vectors along x, y and 
z axes, respectively. 

2.3 Vector Operations:

2.3.1 Multiplication of a Vector by a Scalar:

Multiplying a vector P
��

 by a scalar quantity, 
say s, yields another vector. Let us write 

 Q = sP
�� ��

     --- (2.4)

Q
��

 will be a vector whose direction is the 
same as that of P

��
 and magnitude is s times the 

magnitude of P
��

.   

2.3.2 Addition and Subtraction of Vectors:

The addition or subtraction of two or more 
vectors of the same type, i.e., describing the 
same physical quantity, gives rise to a single 
vector, such that the effect of this single vector 
is the same as the net effect of the vectors which 
have been added or subtracted .

It is important to understand that only 
vectors of the same type (describing same 
physical quantity) can be added or subtracted 

e.g. force F
1

��
 and force F

2

��
 can be added to give 

the resultant force  F = F + F1 2

�� �� ���
. But a force 

vector can not be added to a velocity vector.   

It is easy to find addition of vectors AB
� ���

 

and BC
� ���

 having the same or opposite direction 
but different magnitudes. If individual vectors 
are parallel (i.e., in the same direction), the 
magnitude of their resultant is the addition of 
individual magnitudes, i.e., AC AB BC= +

� ��� � ��� � ��
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and direction of the resultant is the same as 
that of the individual vectors as shown in Fig 
2.4 (a). However, if the individual vectors are 
anti-parallel (i.e., in the opposite direction), the 
magnitude of their resultant is the difference of 
the individual magnitudes, and the direction is 
that of the larger vector i.e., AC AB BC= -

� ��� � ��� � ��
as shown in Fig. 2.4 (b).

 

Fig. 2.4 (a): Resultant of parallel displacements.

Fig 2.4 (b): Resultant of anti-parallel forces.

2.3.3 Triangle Law for Vector Addition:

When vectors of a given type do not act 
in the same or opposite directions, the resultant 
can be determined by using the triangle law of 
vector addition which is stated as follows:

If two vectors describing the same physical 
quantity are represented in magnitude and 
direction by the two sides of a triangle taken 
in order, then their resultant is represented in 
magnitude and direction by the third side of the 
triangle drawn in the opposite sense (from the 
starting point of first vector to the end point of 
the second vector).

Let A


  and B


  be two vectors in the plane 
of paper as shown in Fig. 2.5 (a). The sum of 
these two vectors can be obtained by using the 
triangle law described above as shown in Fig. 
2.5 (b). The resultant vector is indicated by C

��
.

B


A


Fig. 2.5 (a): Two vectors A


  and B


 in a plane,  

    

B


A


C
��  Resultant

Fig. 2.5 (b): Resultant vector  C = A + B
�� � �

.

We can use the triangle law for showing 
that 

(a) Vector addition is commutative. 

For any two vectors P
��

 and Q
��

,

 P +Q = Q + P
   

    --- (2.5)   

Figure 2.6 (a) shows addition of the two 
vector P

��
 and Q

��
 in two different ways. Triangle 

OAB shows P +Q = R = OB
� � � ���

, while triangle 

OCB shows Q +P = R =OB
�� �� �� � ���

.

∴P +Q =Q +P
�� �� �� ��

 

Fig. 2.6 (a): Commutative law.

(b) Vector addition is associative 

If A


, B


 and C
��

 are three vectors then 

 ( A + B ) +C = A +( B +C )
� � �� � � ��

 

A
 + B


B


+C
��

R


A


B


 

C
��

RO

P Q

Fig. 2.6 (b): Associative law. 

Figure 2.6 (b) shows addition of 3 vectors 
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A


, B


 and C
��

 in two different ways to give 
resultant R



.

R =( A + B ) +C 
� � � ��

 --- from triangle OQR

R = A +( B C )
� � � ��

+  --- from triangle OPR

i.e., ( A + B ) +C = A +( B +C )
� � �� � � ��

  --- (2.6)

Thus the Associative law is proved.

Example 2.1: Express vector AC
� ���

  in terms of 

vectors AB
� ��

 and CB
� ��

 shown in the following 
figure.

A B

C

Solution: Using the triangle law of addition of 
vectors we can write 

AC +CB = AB

AC = AB -CB

� ��� � �� � ��

� ��� � �� � ��
∴

Example 2.2: From the following figure, 
determine the resultant of four forces

A , A A A1 2 3 4,   
   

and  

                          

A

B

C

D

O
A1



A2



A3



A4



A5



Solution: Join OB
� ��

 to complete ∆ OAB as 
shown in (a)

A

B

C

D

O

A3



A4



A5



A1
 A2



+

A1



A2



 

Fig. (a)

Now, OB =OA AB A A+ = +1 2

� �� � �� � �� � �

Join OC
� ���

 to complete triangle OBC as 
shown in (b).

Now,  OC OB BC A A A= + ++ = 1 2 3

� �� ��� ��� � � �

A

B

C

D

O A1



A2



A3



A4



A5



A1
 A2



+A1

A2

A3

+
+

Fig. (b)

From triangle OCD,

OD A OC CD A A A A= = + +5 1 2 3 4+ = +
� �� � � �� ��� � � � �

 

Thus OD
� ��

 is the resultant of the four vectors,

A , A A A1 2 3 4,   
   

and , represented by

 OA AB BC CD
� ��� � ��� � ��� � ���

, ,   and , respectively. 

2.3.4 Law of parallelogram of vectors:

Another geometrical method of adding two 
vectors is called parallelogram law of vector 
addition which is stated as follows:

If two vectors of the same type, originating 
from the same point (tails at the same point) 
are represented in magnitude and direction by 
two adjacent sides of a parallelogram, their 
resultant vector is given in magnitude and 
direction by the diagonal of the parallelogram 
starting from the same point as shown in Fig. 
2.7.

   

Fig 2.7: Parallelogram law of vector addition.

In Fig. 2.7, vector OA
� ��� ��

= P  and vector 

OB
� �� ��

= Q , represent two vectors originating from 
point O, inclined to each other at an angle θ. If 
we complete the parallelogram, then according 
to this law, the diagonal OC

� �� �
= R  represents the 

resultant vector.

To find the magnitude of R


, drop a 

∝
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perpendicular from C to reach OA (extended) at 
D. In right angled triangle ODC, by application 
by Pythagoras theorem,

OC2 = OD2+DC2

    = (OA+AD)2 + DC2

OC2 = OA2+2OA.AD+AD2+DC2

In the right angled triangle ADC, by 
application of Pythagoras theorem

AD2+DC2=AC2

... OC2=OA2+2OA. AD+ AC2    --- (2.7)

Also,

 OA  AC  OB =  and OC
� ��� ��� � ��� � ��� �� � ��� ��

= = =P, Q R

In ∆ ADC, cos θ = AD/AC

... AD=AC cos θ = Q cos θ  

 Substituting in Eq. (2.7)

 R2 = P2+Q2+2 P Q cos θ.  

 �R = P +Q +2 P Q 2 2 cos�  --- (2.8)

Equation (2.8) gives us the magnitude of 

resultant vector R


.

To find the direction of the resultant vector 

R


, we will have to find the angle (α) made by 

R


  with P
��

.

In  ODC,  tan =
DC

OD

                              =
DC

OA + A

� �

DD
 --- (2.9)

From the figure,  sin =
DC

AC

DC = AC sin = Q sin

�

� ��
Also,

AD = AC cosθ = Q cosθ

and OA = P
��

,

Substituing in Eq. (2.9), we get

tan =
 sin

+  cos 

= tan
 sin

+  cos 
-1

�
�
�

�
�
�

Q

P Q

Q

P Q
�

�
�
�

�
�
�

   
--- (2.10)

Equation (2.10) gives us the direction of 
resultant vector R



. 

If β is the angle between R


 and Q
��

, it can be 

similarly derived that �
�
�

�
�

�

�
�

�

�
�

�tan
sin

cos
1 P

Q P
 

Example 2.3: Water is flowing in a stream 
with velocity 5 km/hr in an easterly direction 
relative to the shore. Speed of a boat is relative 
to still water is 20 km/hr. If the boat enters the 
stream heading North, with what velocity will 
the boat actually travel?

Solution: The resultant velocity R


 of the boat 
can be obtained by adding the two velocities 
using  ∆ OAB shown in the figure. Magnitude 
of the resultant velocity is calculated as follows:

R

A B

α

20 km/hr

5 km/hr

O  

R =

     km / hr

The direction of the resultant

20 5

425 20 61

2 2�

� � .

  velocity i

= tan tan

                  

-1 -1

s

5

20
0 25

�
�
�

�
�
� � ( . )

         � �14 040
∴ 

The velocity of the boat is 20.61 km/hr in a 
direction 14004′ east of north. 

2.4 Resolution of vectors:

A vector can be written as a sum of two 
or more vectors along certain fixed directions. 

Thus a vector V


 can be written as

V V V V
� � � �� � �   1 2 3� � �    

--- (2.11)

where � ��� � �,  ,   are unit vectors along chosen 
directions. V

1
, V

2
 and V

3
 are known as 

components of V


 along the three directions 

� � �  ,  and .

The process of splitting a given vector 
into its components is called resolution of the 
vector. The components can be found along 
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directions at any required angles, but if these 
components are found along the directions 
which are mutually perpendicular, they are 
called rectangular components.  

Fig. 2.8 : Resolution of a vector. 

Let us see how to find rectangular 
components in two dimensions.

Consider a vector R =
� ���

OC , originating 
from the origin of a rectangular co-ordinate 
system as shown in Fig. 2.8.

Drop perpendiculars from C that meet the 
x-axis at A and y-axis of at B. 

OA and OB
� �� � ��� �

= R   = Rx y ; R   Rx y

 

and  being the 

components of OC
� ��

 along the x and y axes, 
respectively.                                                 

Then by the law of parallelogram of 
vectors,

R = R  + Rx y

  

   --- (2.12)

R = R + R  x yi j
� � �

   --- (2.13)

where i  and j  are unit vectors along the x 
and y axes respectively, and R

x
 and R

y
 are the 

magnitudes of the two components of R


 .

Let θ be the angle made by R


 with the 
x-axis, then 

cos

 cos

�

�

=
R

R

= R

x

xR�    
--- (2.14)

sin

 sin

�

�

=
R

R

R = R

y

y�
   --- (2.15)

Squaring and adding Eqs. (2.14) and 
(2.15), we get

R    + R   = R + R

R = R + R

,  R = R + R

2 2 2 2 2 2

2 2 2

2 2

x y

x y

x y

cos sin

or

� �

�

   
--- (2.16)

Equation (2.16) gives the magnitude of R


. 

To find the direction of R


, from Fig. 2.8,

  

tan

tan

�

�

=
R

R

=
R

R

y

x

y

x

-1�
�

�
�

�

�
�

  

--- (2.17)

Similarly,  if  R ,  Rx y

� ��
 and Rz



 are the 
rectangular components of R



 along the x, 
y and z axes of the rectangular Cartesian co-
ordinate system in three dimensions, then    
R = R + R + R = R + R + R

R = R + R + R

x y z x y z

x y

i j k

,   2 2
z

2

�� �� �� �� � � �
��

or
 

---- (2.18)

If two vectors are equal, it means that their 
corresponding components are also equal and 
vice versa.

If A


 = B


i.e., if  A i + A j + A k = B i + B j + B kx y z x y z ,       then

   A
x
 = B

x 
, A

y 
=

 
B

y
 and A

z
 = B

z
 

Example 2.4: Find a unit vector in the direction 

of the vector 3 + 4i j   

Solution: 

Magnitude of 

Let V i j

V V

� � �
� �

= 3 + 4

 = | | = 3 4 25 52 2� � �

V V
� � � = α | | , where α  is a unit vector along V



.

 
��

�
� � � �
V

|V |
=

3

5
i +

4

5
j

 

Example 2.5: Given a i +2 j  b = 2i + j
� � � � � �= and , 

what are the magnitudes of the two vectors? Are 
these two vectors equal?

Solution: 

| | = = 

| | = = 

a

b





1 2 5

2 1 5

2 2

2 2

+

+

The magnitudes of a


 and b


 are equal. 
However, their corresponding components are 
not equal i.e., a

x
≠ b

x
 and a

y
 ≠ b

y 
. Hence, the two 

vectors are not equal.
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2.5 Multiplication of Vectors:

We saw that we can add or subtract 
vectors of the same type to get resultant vectors 
of the same type. However, when we multiply 
vectors of the same or different types, we get 
a new physical quantity which may either be 
a scalar (scalar product) or a vector (vector 
product). Also note that the multiplication of a 
scalar with a scalar is always a scalar and the 
multiplication of scalar with a vector is always 
a vector. Let us now study the characteristics 
of a scalar product and vector product of two 
vectors.
2.5.1 Scalar Product (Dot Product): 

The scalar product or dot product of two 

nonzero vectors   P
��

 and Q
��

 is defined as the 
product of magnitudes of the two vectors and the 
cosine of the angle θ between the two vectors. 

The scalar product of P
��

 and Q
��

 is written as,

P
�� .Q
��

 = PQ cos θ,   --- (2.19) 

where θ is the angle between P
��

and Q
��

.

Characteristics of scalar product

(1) The scalar product of two vectors is 
equivalent to the product of magnitude of one 
vector with the magnitude of the  component of 
the other vector in the direction of the first.

Pc
os

θ

Q cos θO P

--
--

--
--

--
--

--
--

-

θ -----
-----

-----
-----

-

P
��

Fig. 2.9: Projection of vectors.
From Fig. 2.9,

P
�� .Q
��

= PQ cos θ  
        = P (Q cos θ) 
        = P (component of Q

��
 in the direction of P

��
)

Similarly P
�� .Q
��

 = Q (P cos θ)
   = Q (component of P

��
 in the direction of Q

��
)

(2) Scalar product obeys the commutative law 
of vector multiplication.

P
�� .Q
��

= P Q cos θ = Q P cos θ = Q
��

. P
��

(3) Scalar product obeys the distributive law of 
multiplication 

 P
��

. (Q
��

+ R


) = P
��

.Q
��

+ P
��

. R


(4) Special cases of scalar product P
��

.Q
��

 = P 
Q cos θ
(i) If θ = 0, i.e., the two vectors  P

��
and Q

��
are 

parallel to each other, then 

P
��

.Q
��

= P Q cos θ = P Q 

Thus, i i j j k k= = =1     ⋅ ⋅ ⋅

Scalar and vector products are very 
useful in physics. They make mathematical 
formulae and their derivation very elegant. 

Figure below shows a toy car pulled 
through a displacement S



. The force F
��

 
responsible for this is not in the direction of 
S


 but is at an angle θ to it. Component of 
displacement along the direction of force F

��
 

is S cosθ. According to the definition, the 
work done by a force is the product of the 
force and the displacement in the direction 
of force. ∴W = FS cosθ. According to the 
definition of scalar product, 

    F
��

. S


= F S cosθ

  ∴W = F
��

. S


  Also W = F (S cosθ) = (F cosθ) S

Hence dot or scalar product is the 
product of magnitude of one of the vectors 
and component of the other vector in the 
direction of the first.

Power is the rate of doing work on a 
body by an external force F

��
 assumed to 

be constant in time. If v


 is the velocity of 
the body under the action of the force then 
power P is given by the scalar product of F

��
 

and v


 i.e., P = F
��

. v


.  

Do you know ?

Q
��
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(ii) If θ = 180°, i.e.,  the two vectors P
��

 and Q
��

 
are anti-parallel, then

 P
��

.Q
��

= P Q cos 180° = -P Q

(iii) If θ = 90°, i.e., the two vectors are 
perpendicular to each other, then

  P
��

.Q
��

= P Q cos 90° = 0 
Thus,  i j j k k i= = =0     ⋅ ⋅ ⋅

(5) If P
��

=Q
��

 then P
��

.Q
��

 = P2 = Q2

(6) Scalar product of vectors expressed in terms 
of rectangular components :

Let

and

Then

 P = P i +P j +P k

 Q =Q i +Q j +Q k

 P Q = P

x y z

x y z

�� � � �
�� � � �
�� ��
� xx x y y z z

x y z x y

 Q +P  Q +P  Q

: 

P Q =(P i +P j +P k ) (Q i +Q j

Proof
�� �� � � � �� � �� �

� � � �

� � � �

�

+Q k )

= P i (Q i +Q j +Q k )

+P j (Q i +Q j +Q k )

+P k

z

x x y z

y x y z

z

�

�

�  (Q i +Q j +Q k )

=( i i ) P Q +( i j ) P Q +( i k )P Q

+(

x y z

x x x y x z

� � �

� � � � � �� � �

jj i ) P Q +( j j ) P Q +( j k )P Q

+( k i ) P Q +( k j )

y x y y y z

z x

� � � � � �

� � � �
� � �

� �   P Q +( k k ) P Q

,  i = j j =k k =1

 i j =

z y z z
� �

� � � � � �

� �

�

� � �

�

Since   

and

i

jj k =k i =i k = =k j =0

P Q = P Q +0 +0

        

j i

x x

� � � � � � � � � �
�� ��

� � � �

� �

�

       + 0 +P Q +0

              +0 +0 +P Q

P Q = P Q +P Q

y y

z z

x x y� �
�� ��

yy z z+P Q

(7) If a b a c
   

� � � , where a


≠ 0 , it is not necessary 
that b c

 

= . Using the distributive law, we can 

write a b c
  

� �� � � 0 . It implies that either b c
 

-  
= 0 or a



 is perpendicular to b c
 

- . It does not 

necessarily imply that b c
 

� � 0

Example 2.6: Find the scalar product of the 
two vectors

  v  v    and 
� � � � � � � �

1 22 3 3 54� � � � � �i j k i j k

Solution:  

 v v
� � � � � � � �

1 2� � �( 2 +3 ) (3 5i + j k i +4 j - k )

           =1×3 +2×4 +3××(-5)

           = - 4

  i i = j j =k k =1,

  i j =i

as

and

� � � � � �

� � �
� � �

� �� � � � �k = j k = j i =k i =k j =0� � � � � � � � �

2.5.2 Vector Product (cross product):

The vector product or cross product of two 

vectors ( P
��

 and Q
��

) is a vector whose magnitude 
is equal to the product of magnitudes of the 
two vectors and sine of the smaller angle (θ) 
between the two vectors. The direction of the 
product vector is given by u r  which is a unit 
vector perpendicular to the plane containing the 
two vectors and is given by the right hand screw 
rule. This is shown in Fig. 2.10 (a) and (b)

 a) R = P Q = PQ sin  ur

� �� �� �� �   --- (2.18)

 b) S = Q P = PQ sin  us

� �� �� �� �   --- (2.19)	
	 	 	

R


O θ

P
��

Q
��

u r

  

Fig. 2.10 (a): Vector product R


= P
��

×Q
��

.                   

u s

θ

P
��

Q
��

O

S


Fig. 2.10 (b): Vector product S


 = Q
��

× P
��

. 
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According to the right hand screw rule, if 
the screw is rotated in a direction from P

��
 to

Q
��

 through the smaller angle, then the direction 
in which the tip of the screw advances is the 

direction of R


, perpendicular to the plane 
containing P

��
 and Q

��
.  One example of vector 

or cross product is the force F
��

 experienced by 
a charge q moving with velocity v



 through a 
uniform magnetic field of magnetic induction 
B


. It is an empirical law (experimentally 
determined) given by F q B

�� � ��
� �v . 

 A×( B +C ) = A×B + A×C
� � �� � � � ��

  --- (2.21)

(3) Special cases of cross product

  | |P ×Q P Q=
 

 sinθ        --- (2.22) 

(i) If  θ =0. i.e., if the two nonzero vectors are 
parallel to each other, their vector product is a 
zero vector | P ×Q |= P Q 0 =0

�� ��
⋅

(ii) If θ = 180°, i.e., if the two nonzero vectors 
are anti-parallel, their vector product is a zero 
vector | P ×Q |= P Q 

 

sin  180 0� � �P Q sin�  

(iii) If  θ = 90°, i.e., if the two nonzero vectors 
are perpendicular to each other, the magnitude 
of their vector product is equal to the product of 
magnitudes of the two vectors. 

 | P ×Q |= P Q  90  = P Q 
 

sin °

Thus i × j =  k , j ×  k = i and  k × i = j

(4) If P = Q  | P ×Q |= | P ×P |=| Q ×Q |= 0
       

then  . 

Thus  i × i = j × j =  k ×  k =0 

(5) Let P = P i + P j + P k
x y z

�� � � �

          and Q  = Q i +Q j +Q kx y z

�� � � �  

 × P i + P j + P k × Q i +Q j +Q k

= P Q

P Q = x y z x y z

x x         i ×i

� � � � � � � �

�
� � � �

�� � � � �

� �
� � � � � �
� �

   + i × j + i ×k

          + j × i +

P Q P Q

P Q P Q

x y x z

y x y yy y z

z x z y

j × j + j ×k

          + k ×i + k × j

  

 

P Q

P Q P Q

� � � �

� � � �
� � � �

� � � �  + k ×kP Qz z  � �� �
Now and  × = × = × =0, 

× = - , × = -

i i j j k k

i k j j i           

� � � � � �

� � � � � kk k j i

i j k j k i k i j

P

, × = -

× = ,  × = , × =            

� � � �

� � � � � � � � �.

∴
��� �� � �

� �
× -

- +0 +  

     

Q =0 + P Q k P Q j

             P Q k P Q i

x y x z

y x y z

         +

          P Q P Q

       

P Q j P Q i

i

z x z y- +0

 =( - )y z z y

� �

� 

     + (P Q - P Q ) j

           +(P Q - P Q ) k

z x x z

x y y x

 

 

�

�

This can be written in a determinant form as

 1.As linear displacement x


 is the distance 
travelled by a body along the line of travel, 
angular displacement θ



 is the angle swept 
by a body about a given axis. The rate 
of change of angular displacement is the 

angular velocity denoted by ω


. If a body 
is rotating about as axis, it possesses 

an angular velocity ω


. If at a point at a 
distance r



 from the axis of rotation the 

body has linear velocity v


, then v


= ω


× r


.

 2. An external force is needed to move a body 
from one point to other. Similarly to rotate 
a body about an axis passing through it, 
torque is required. Torque is a vector with 
its direction along the axis of rotation and 
magnitude describing the turning effect 

of force F
��

 acting on the body to rotate it 
about the given axis. Torque τ



 is given 
as τ


= r


 × F
��

, r


 being the perpendicular 
distance of a point on the body where the 
force is applied from the axis of rotation.

Do you know ?

Characteristics of Vector Product:

(1) Vector product does not obey commutative 
law of multiplication.

 P ×Q Q ×P
�� �� �� ��

≠     --- (2.20)

However, | P ×Q |= | Q ×P |
� � �� �

 i.e., the magnitudes 
are the same but the directions are opposite to 
each other.

(2) The vector product obeys the distributive 
law of multiplication.



25

Example 2.8: If A = 5i +6 j +4k
� � � �  and

 B = 2i - 2 j +3k
� � � � , determine the angle between 

A


 and B


.

Solution: A


. B


 = A B cosθ = A
x
B

x
+A

y
B

y
+A

z
B

z

cos

cos

θ

θ

=

=

A B + A B + A B

A B

A B + A B + A B

A + A + A B + B

x x y y z z

x x y y z z

x

2

y

2

z

2

x

2

y

22

z

2+ B

(5)(2) +(6)(-2) +(4)(3)

25 +36 +16 4 +4 +9

=
10

77.

= 

      

cosθ

117
=0.2764

= -10.2765 =73°58'θ cos  

Example 2.9: Given P = 4 - +8i j k
� � � �  and 

Q = 2 - m +4i j k ,
� � � �  find m if P

��
 and Q

��
 have the 

same direction.

Solution: Since P
��

 and Q
��

 have the same 
direction, their corresponding components must 
be in the same proportion, i.e., 

P

Q
=

P

Q
=

P

Q
 

 
4

2
=

-1

-m
=

8

4
  

m =

x

x

y

y

z

z

1

2
∴

2.6 Introduction to Calculus:

Calculus is the study of continuous (not 
discrete) changes in mathematical quantities. 
This branch of mathematics was first developed 
by G.W Leibnitz and Sir Issac Newton in the 
17th century and is extensively used in several 
branches of science. You will study calculus 
in mathematics in XIIth standard. Here we will 
learn the basics of the two branches of calculus 
namely differential and integral calculus. These 
are necessary to understand the topics covered 
in this book.

2.6.1 Differential Calculus:

Let us consider a function y = f(x). Here x 
is called an independent variable and f(x) gives 
the value of y for different values of x and is the 

  ×

i     j      k

P    P    P

Q   Q   Q

P Q =
x y z

x y z

� �
� � �

  --- (2.23)

(6) The magnitude of cross product of two 
vectors is numerically equal to the area of a 
parallelogram whose adjacent sides represent 
the two vectors.

Fig 2.11: Area of parallelogram and vector 
product. 

As shown in fig. 2.11,

    P Q P Q
� ��� � �� � �

= =OA OB    and ,,  are inclined at 
an angle θ.

Perpendicular BD, of length h drawn on 
OA, gives the height of the parallelogram with 
OA as base. 

Area of parallelogram  

= base × height 

= OA BD, as 
BD

OB
=  sin

�

�

�sin�

�P Q

P ×Q
�� ��

 = magnitude of the vector product  --- (2.24)

Example 2.7: The angular momentum 

L = r × p
  

, where r


 is a position vector and p
��

is 
linear momentum of a body.

If r = 4i ×6 - 3k  = 2i +4 - 5k   Lj p j ,
� � � � �� � � � �

and find 
Solution: 

L = r × p =

i             j              k

4            6  
� � �

� � �

           - 3

2            4            - 5 

L = (-30 +12) i +∴
� � ((-6 + 20) j +(16 - 12)k

       = -18i +14 j +4k.

� �

� � �
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dependent variable. For example x could be the 
position of a particle moving along x-axis and  
y = f(x) could be its velocity at that position 
x. We can thus draw a graph of y against x as 
shown in Fig. 2.12 (a). Let A and B be two points 
on the curve giving values of y at x = x

0
 and  

x = x
0 
+ ∆x, where ∆x is a small increment in x. 

The slope of the straight line joining A and B is 

given by tan � �
�

�

y

x
. 

If we make ∆x smaller, the point B will 
come closer to A and  if we keep making ∆x 
smaller and smaller, we will ultimately  reach a 
stage when B will coincide with A. This process 
is called taking the limit ∆x going to zero and 

is written as lim
�x�0 . In this limit the line AB 

extended on both sides to P and Q will become 
the tangent to the curve at A, i.e., at

Fig. 2.12 (a): Average rate of change of y 
with respect to x.

Fig. 2.12 (b): Rate of change of y with 
respect to x at x

0

x = x
o
. In this limit both ∆x and ∆y will go to 

zero. However, when two quantities tend to 
zero, their ratio need not  go to zero. In fact 

lim
�

�
�x 0�

�
�
�

�
�
�

y

x becomes the slope of the tangent 
shown by PQ in Fig. 2.12 (b). This is written as 
dy/dx at x = x

o
.

Thus, 
dy

dx

y y y

x

df(x)

dx

f x x f x

x

x

x

0

0

0

0

�
� �

�
�

�

�

lim

lim

( )

( )

�

�

�
�

�
�

x

x

0 0+ ( )

We can drop the subscript zero and write 
a general formula which will be valid for all 
values of x as 

dy

dx

df(x)

dx

f(x + x) - f(x)

x
=�

�
lim
�

�
�x 0  

--- (2.25)

In XIIth standard you will learn about 
the properties of derivatives and how to find 
derivatives of different functions. Here we will 
just list the properties as we will need them in 
later  Chapter s. dy/dx is called the derivative of 
y with respect to x (which is the rate of change of 
y with respect to change in x) and the process of 
finding the derivative is called differentiation. 
Let f

1
(x) and f

2
(x)  be two different functions of 

x and let s be a constant. Some of the properties 
of differentiation are

1. 
d(sf(x))

dx
= s

df(x)

dx
    --- (2.26)     

2. d

dx
(f (x) + f (x)) =

df (x)

dx
+

df (x)

dx
 1 2

1 2   --- (2.27)

3. 
d

dx
(f (x)× f (x)) = f (x)

df (x)

dx
+ (x)

df (x)

dx
1 2 1

2 1f
2

 

                  --- (2.28)

4. 
d

dx

f (x)

f (x)
=

1

f (x)
 
df (x)

dx
 -

f (x)

f (x)

df (x)

dx
 1

2 2

1 1

2

2

2
�

�
�

�

�
�

     --- (2.29)

5. If x depends on time another variable t then,

  

df(x)

dt
=

df(x)

dx

dx

dt            
--- (2.30)

6.

 

The derivatives of some simple functions 
of x are given below.
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1. 
d

dx
(x ) = n xn n-1

   --- (2.31)

2.  d(e )

dx
= e

d(e )

dx
= ae

x
x

ax
ax and  --- (2.32)

3. d

dx

1

x
  (ln x) =    --- (2.33)

4. d

dx
(  x) =  xsin cos    --- (2.34)

5. d

dx
(  x) = -  x cos sin    --- (2.35)

6. d

dx
(  x) =  x 2tan sec    --- (2.36)

7. d

dx
(  x) = -  x2cot cosec   --- (2.37)

8. d

dx
(  x) =  x  xsec tan sec   --- (2.38)

9. 
d

dx
(  x) = -  x  xcosec cosec cot   --- (2.39)

Example 2.10: Find the derivatives of the 
functions. 

        

(a) (b)   sin

(c) sin

           f(x) f(x) = x +  x

   f(x) = x  x

= x8 3

3

 
Solution : 
(a) Using dx

dx
= nx

n
n-1 ,

 

d(x )

dx
= 8x

8
7

(b) Using
d

dx
(f (x) + f (x)) =

df (x)

dx
+

df (x)

dx
    

d (  x)

dx
 =

1 2
1 2 and

sin
cos xx

d

dx
(x + x) =

d(x

dx
+

d (  x)

dx

                       

3
3 )

sin 
sin

   = 3x + x2 cos 

c) Using
d

dx
(f (x) f (x)) = f (x)

df (x)

dx
+

df (x)

dx
 f (x) 

d( x)

1 2 1
2 1

2

and 
sin 

ddx

 
d 

dx
(x x) = x

d ( x)

dx
+

d(x

dx
x 

      

= x

)3 3
3

cos 

sin 
sin 

sin 

                 = x x +3x x3 2cos sin  

2.6.2 Integral calculus

Integral calculus is the branch of 
mathematics dealing with properties of integrals 
and their applications. Physical interpretation 
of integral of a function f(x), i.e., f(x)dx∫   is 
the area under the curve f(x) versus x. It is the 
reverse process of differentiation as we will see 
below. 

We know how to find the area of a 
rectangle, triangle etc. In Fig. 2.13(a) we have 
shown y which is a function of x, A and B being 
two points on it.

Fig. 2.13 (a): Area under a straight line.

Fig. 2.13 (b): Area under a curve.

The area under the curve (straight line) 
from x = a to x = b is shown by shaded area. 
This can be obtained as sum of the area of the 
rectangle ADEC = f(a) (b-a) and the area of the 
triangle ABC = 1/2 (b-a) (f(b)-f(a))

Figure 2.13(b) shows another function of 
x. We do not have a simple formula to calculate 
the area under this curve. For this calculation, 
we use a simple trick. We divide the area into a 
large number of vertical strips as shown in the 
figure. We assume thickness (width) of each 
strip to be so small that it can be assumed to be 
a rectangle as shown in the figure and add the 
areas of these rectangles. Thus the area under 
the curve is given by
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 Indefinite integrals of some basic functions 
are given below. Their definite integrals can be 
obtained by using the Eq. (2.44)

1. x dx =
x

n +1
n

n+1

∫        
     

--- (2.47)

2. 1

x
dx = ln x∫       

     
--- (2.48)

3. sin cosx dx = -  x∫   --- (2.49)

4. cos sin x dx =  x∫    --- (2.50)

5. e dx = ex x ∫     --- (2.51)

Example 2.11: Evaluate the following 
integrals:

 

(a)

( )

      

(c)     sin  

    

x x

(x +  x) dx

8d

x dx2

2

5

∫

∫

∫b

Solution: (a) Using formula

 x dx = x dx =n 8
9x

n +1
 ,   

x

9

n+1

∫ ∫
(b) Using Eq. (2.44),  

 
x dx =

x

3
 
5

2
= - = =2

3

2

5 5

3

2

3

125 - 8

3

117

3

3 3

∫

(c) Using Eq. (2.45), 

f (x) + f (x) dx =

 x dx =  x,  

1 2 1 2f (x)dx + f (x)dx � �� � �
and sin cos we  get sin 

sin cos

 � �

� �

(x + x) dx

x dx +  x dx =
x

2
-  x

2

 1.  hyperphysics.phy-astr.gsu.edu/hbase/vect.
html#veccon

 2.  hyperphysics.phy-astr.gsu.edu/hbase/
hframe.html

Internet my friend

Area under the curve 

= �A = (x - x ) f(x )i
i=1

n

i i -1
i=1

n

i� �  

where n is the number of strips and ∆A
i
 is the 

area of the ith strip. 

As the strips are not really rectangles, the 
area calculated above is not exactly equal to the 
area under the curve. However as we increase 
n, the sum of areas of rectangles gets closer to 
the actual area under the curve and becomes 
equal to it in the limit n →∞. Thus we can write,

Area under the curve 

= lim
n

(x - x ) f(x )
i i -1

i =1

n

i��
�   --- (2.40)

Integration helps us in getting exact area if 
the change is really continuous, i.e., n is really 

infinite. It is represented as f(x)dx
x=a

x=b

∫  and is  
 
called the definite integral of f(x) from x = a to 
x = b.

Thus, f(x) dx (x - x ) f(x )
x=a

x=b

n i i-1
i=l

n

i� ���
=  lim

     --- (2.41)
The process of obtaining the integral is called 
integration. We can also write 

F(x) = f(x)dx∫    --- (2.42)

 F(x) is called the indefinite (without any 
limits on x) integral of f(x). Differentiation 
is the reverse process to that of integration. 
Therefore,

 
f(x) =

d

dx
(F(x))

   
--- (2.43)

 

 
� �F(x)

b

a
= F(b) - F(a) = f(x)dx

a

b
 --- (2.44)

Properties of integration 

1. f (x) + f (x)1 2 dx = f (x)dx + f (x)dx  
1 2� � ���  

     --- (2.45)

2. K f(x)dx = K f(x)dx   K∫ ∫ for = constant

     --- (2.46)
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1. Choose the correct option.
 i)  The resultant of two forces 10 N and 15 N 

acting along + x and - x-axes respectively, 
is 

  (A) 25 N along + x-axis 
  (B) 25 N along - x-axis  
  (C) 5 N along + x-axis
  (D) 5 N along - x-axis
 ii)  For two vectors to be equal, they should 

have the 
  (A) same magnitude
  (B) same direction
  (C) same magnitude and direction
  (D) same magnitude but opposite direction
 iii) The magnitude of scalar product of two 

unit vectors perpendicular to each other is 
  (A) zero   (B) 1
  (C) -1  (D) 2
 iv)  The magnitude of vector product of two 

unit vectors making an angle of 60° with 
each other is 

  (A) 1  (B) 2
  (C) 3/2  (D) 3 2/
 v)  If A B

�� ��
,  and C

��
 are three vectors, then 

which of the following is not correct?

  (A) A B C A B A C
�� �� �� �� �� �� ��

 � �� � � � � �

  (B) A B B A
�� �� �� ��
� � �

  (C) A B B A
�� �� �� ��
� � �

  (D) A B C A B B C
�� �� �� �� �� �� ��
� �� � � � � �  

2. Answer the following questions. 

 i)  Show that a =
i - j

2

� � �
 is a unit vector.

 ii)  If v v1 2 and 
�� � � � ��� � � �= =3i +4 j +k i - j - k , 

  determine the magnitude of v v1 2

�� ���
+ .

       [Ans: 5] 

 iii)  For v1

�� � �= 2i - 3 j  and v2

��� � �� �6i +5 j , 
determine the magnitude and direction of 
v v1 2 
�� ���

+ . 

       
Ans   2 ,  = tan with - axis-1: 5

1

2
� ��

�
�

�
�
�

�

�
�

�

�
�x

 iv)   Find a vector which is parallel to v
� � �= i - 2 j   

and has a  magnitude 10.

      Ans : 
10

5
i -

20

5
j 

�

�
�

�

�
�  

 v)  Show that vectors a = 2 5i + j -6k
� � � �  and 

b = i +
5

2
j - 3k

� � � �  are parallel.

3. Solve the following problems. 

 i)  Determine a ×b ,
 

 given  = 2i +3 ja
� � �  and 

b = 3i +5 j 
� � � . 

       Ans  :k�
�

�
�

 ii) Show that vectors a = 2i +3 j +6k ,
� � � �   

  b =3i -6 j +2k
� � � �  and  =6i +2 j - 3kc

� � � � are 
mutually perpendicular.

 iii)  Determine the vector product of 

v v1 2 and 
�� � � � ��� � � �= =2i +3 j - k i +2 j - 3k , 

     Ans  -: 7i +5 j +k  �
�

�
�

  iv)  Given v1

�� � �= 5i +2 j  and v2

�� � �= ai -6 j  are 
perpendicular to each other, determine the 
value of a.       

   � Ans :  
12

5
�
��

�
��

 v)  Obtain derivatives of the following 
functions:

  (i) x sin x   (ii) x4+cos x   
(iii) x/sin x

        

Ans  sin cos , 

(ii) sin , (iii) 
sin

cos

: (i)  x + x  x

4x -  x
1

 x
-

x  3 xx

x2sin

�

�

�
�

�

�

�
�

 vi) Using the rule for differentiation for 
quotient of two functions, prove that

  

d

dx

 x

 x
= x2sin

cos
sec

�
�
�

�
�
�

 

 vii)  Evaluate the following integral:  

   
(i) (ii)

/
  sin            x dx x dx

0

2

1

5�

� �    

          Ans   1: (i) , (ii)1 2� �
***

Exercises Exercises

1
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1. What is meant by motion?   2. What is rectilinear motion? 
3. What is the difference between displacement and distance travelled?
4. What is the difference between uniform and nonuniform motion?

Can you recall?

3.1 Introduction:

We see objects moving all around us. Motion 
is a change in the position of an object with time. 
We have come across the motion of a toy car 
when pushed along some particular direction, 
the motion of a cricket ball hit by a batsman for 
a sixer and the motion of an aeroplane from one 
place to another. The motion of objects can be 
divided in three categories: (1) motion along a 
straight line, i.e., rectilinear motion, (2) motion 
in two dimensions, i.e., motion in a plane and, 
(3) motion in three dimensions, i.e., motion in 
space. The above cited examples correspond to 
three types of motions, respectively. You have 
studied rectilinear motion in earlier standards. 
In rectilinear motion the force acting on the 
object and the velocity of the object both are 
along one and the same line. The distances are 
measured along the line only and we can indicate 
distances along the +ve and –ve axes as being 
positive and negative, respectively. The study 
of the motion of an object in a plane or in space 
becomes much easier and the corresponding 
equations become more elegant if we use vector 
quantities. In this  Chapter  we will first recall 
basic facts about rectilinear motion. We will 
use vector notation for this study as it will be 
useful later when we will study the motion in 
two dimensions. We will then study the motion 
in two dimensions which will be restricted to 
projectile motion only. Circular motion, i.e., the 
motion of an object around a circular path will 
be introduced here and will be studied in detail 
in the next standard.

3.2 Rectilinear Motion:

Consider an object moving along a straight 
line. Let us assume this line to be along the 

x-axis. Let x


1  and x


2  be the position vectors 
of the body at times t

1
 and t

2
 during its motion.  

Motion in a Plane3.

The following quantities can be defined for the 
motion.

 1.  Displacement: The displacement of the 
object between t

1
 and t

2
 is the difference 

between the position vectors of the object at 
the two instances. Thus, the displacement 
is given by

    s x x x
   

� � �� 2 1          --- (3.1) 

   Its direction is along the line of motion 
of the object. Its dimensions are that of 
length. For example, if an object has 
travelled through 1 m from time t

1
 to t

2
 

along the +ve x-direction, the magnitude 
of its displacement is 1 m and its direction 
is along the +ve x-axis. On the other 
hand, if the object travelled along the 
+ve y direction through the same distance 
in the same time, the magnitude of its 
displacement is the same as before, i.e., 1 
m but the direction of the displacement is 
along the +ve y-axis. 

 2.  Path length: This is the actual distance 
travelled by the object during its motion. 
It is a scalar quantity and its dimensions 
are also that of length. If an object travels 
along the x-axis from x = 2 m to x = 5 m 
then the distance travelled is 3 m. In this 
case the displacement is also 3 m and its 
direction is along the +ve x-axis. However, 
if the object now comes back to x = 4, then 
the distance through which the object has 
moved increases to 3 + 1 = 4 m. Its initial 
position was x = 2 m and the final position 
is now x = 4 m and thus, its displacement 
is ∆x = 4 – 2 = 2 m, i.e., the magnitude of 
the displacement is 2 m and its direction 
is along the +ve x-axis. If the object now 
moves to x =1, then the distance travelled, 
i.e., the path length increases to 4 + 3 = 
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7 m while the magnitude of displacement 
becomes 2 – 1 = 1 m and its direction is 
along the negative x-axis. 

 3.  Average velocity: This is defined as the 
displacement of the object during the time 
interval over which average velocity is 
being calculated, divided by that time 
interval. As displacement is a vector 
quantity, the velocity is also a vector 
quantity.  Its dimensions are [L1 M0 T-1]. 

If the position vectors of the object are x


1

and x


2  at times t
1
 and t

2
 respectively, then 

the average velocity is given by 

    
vav



 

�
�x x2 1

( )t - t2 1     
--- (3.2)

  For example, if the positions of an object 
are x = +2 m and x = +4 m at times t = 0 and 
t = 1 minute respectively, the magnitude 
of  its average velocity during that time is  
v

av
 = (4 - 2)/(1- 0) = 2 m per minute and its 

direction will be along the +ve x-axis, and 

we write v
� �

av i= 2  m/min where i  is a unit 
vector along x-axis.

 4.  Average speed: This is defined as the 
total path length travelled during the time 
interval over which average speed is being 
calculated, divided by that time interval. 

   Average speed = v
av

 = path length/time 
interval. It is a scalar quantity and has the 
same dimensions as that of velocity, i.e., 
[L1 M0 T-1].

  If the rectilinear motion of the object is 
only in one direction along a line, then 
the magnitude of its displacement will 
be equal to the distance travelled and so 
the magnitude of average velocity will be 
equal to the average speed. However if the 
object reverses its direction (the motion 
remaining along the same line) then the 
magnitude of displacement will be smaller 
than the path length and the average 
speed will be larger than the magnitude of 
average velocity.

 5.  Instantaneous velocity: Ins tan taneous 
velocity of an object is its velocity at a 

given instant of time. It is defined as the 
limiting value of the average velocity of 
the object over a small time interval (∆t) 
around t when the value of the time interval 
(∆t) goes to zero. 

   
v
� � �

�
�

�

�
��

�

�
�� ��

lim
t

x

t

d x

dt0

�
�

,  --- (3.3)

   
d x

dt



 being the derivative of x


 with respect 
 

  to t (see  Chapter  2).

 6.  Instantaneous speed: Instantaneous speed 
is the speed of an object at a given instant 
of time t. It is the limiting value of the 
average speed of the object taken over 
a small time interval (∆t) around t when 
the time interval goes to zero. In such a 
limit, the path length will be equal to the 
magnitude of the displacement and so the 
instantaneous speed will always be equal 
to the magnitude of the instantaneous 
velocity of the object.

Always Remember:

For uniform rectilinear motion, i.e., for an 
object moving with constant velocity along 
a straight line 

 1.  The average and instantaneous 
velocities are equal.

 2.  The average and instantaneous speeds 
are the same and are equal to the 
magnitude of the velocity.

For nonuniform rectilinear motion

 1.  The average and instantaneous 
velocities are different.

 2.  The average and instantaneous speeds 
are different.

 3.  The average speed will be different 
from the magnitude of average velocity.

Example 3.1: A person walks from point P to 
point Q along a straight road in 10 minutes, 
then turns back and returns to point R which 
is midway between P and Q after further 4 
minutes.  If PQ is 1 km, find the average speed 
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and velocity of the person in going from P to R. 

Solution: The path length travelled by the 
person is 1.5 km while the displacement is the 
distance between R and P which is 0.5 km. The 
time taken for the motion is 14 min. 

The average speed = 1.5 / 14 = 0.107 km/min = 
6.42 km/hr. 

The magnitude of the average velocity = 0.5/14 
= 0.0357 km/min = 2.142 km/hr.

Graphical Study of Motion 

We can study the motion of an object by 
using graphs showing its position as a function 
of time. Figure 3.1 shows the graphs of position 
as a function of time for five different types 
of motion of an object. Figure 3.1(a) shows 
an object at rest, for which the x-t graph is a 
horizontal straight line. Since the position 
is not changing, displacement of the object 
zero. Velocity is displacement (which is zero) 
divided by time interval or the derivative of 
displacement with respect to time. It  can be 
obtained from the slope of the line plotted in 
the figure which is zero. 

Figure 3.1(b) shows x-t graph for an object 
moving with constant velocity along the +ve x- 
axis. Since velocity is constant, displacement 
is proportional to elapsed time. The slope 
of the straight line is +ve, showing that the 
velocity is along the +ve x-axis. As the motion 
is uniform, the average velocity is same as the 
instantaneous velocity at all times. Also, the 
speed is equal to the magnitude of the velocity.

Figure 3.1(c) shows the x-t graph for a 
body moving with uniform velocity but along 
the -ve x-axis, the slope of the line being -ve. 
Figure 3.1(d) shows the x-t graph of an object 
having oscillatory motion with constant speed. 
The direction of velocity changes from +ve to 
-ve and vice versa over fixed intervals of time.

Fig 3.1 (a): Object at rest.

Fig 3.1 (b): Object with uniform velocity 
along +ve x-axis.

Fig 3.1 (c): Object with uniform velocity 
along -ve x-axis.

Fig 3.1 (d): Object performing oscillatory 
motion.

Fig.3.1 (e): Object in nonuniform motion.

Figure 3.1(e) shows the motion of an 
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object with nonuniform velocity. Its velocity 
changes with time and, therefore, the average 
and instantaneous velocities are different. 
Figure shows the average velocity over time 
interval from t

1
 to t

4
 around time t

0
, which can 

be seen from Eq. (3.2) to be the slope of line 
AB. For a smaller time interval from t

2
 to t

3
, the 

average velocity is the slope of the line CD. If 
we keep reducing the time interval around t

0
, we 

will ultimately come to a limit, when the time 
interval will go to zero and lines AB, CD... will 
go over to the tangent to the curve at t

0
. The 

instantaneous velocity at t
0
 will thus be equal to 

the slope of the tangent PQ at t
0
 (see Eq. (3.3)).

7. Acceleration: Acceleration is defined as 
the rate of change of velocity with time. It is 
a vector quantity and its dimensions are [L1 
M0 T-2]. The average acceleration of an object 
having velocities v1

 and �


v2  at times t
1
 and t

2
 is 

given by 

 



 

a
t t

�
�� �
�� �

v v2 1

2 1  

  --- (3.4)

Instantaneous acceleration is the limiting 
value of the average acceleration when the 
time interval goes to zero. It is given by 

 
� � �

�
a

t

d

dtt
� �

�
�

�
�
� ��

lim
0

�
�

v v
  --- (3.5) 

The instantaneous acceleration at a given 
time is the slope of the tangent to the velocity 
versus time curve at that time.  Figure 3.2 
shows the velocity versus time (v - t) graphs for 
four different cases. Figure 3.2(a) represents 
the motion of an object with zero acceleration, 
i.e., constant velocity. The shaded area under 
the velocity-time graph over some time interval 
t
1
 to t

2
, shown in Figs. 3.2(a) is equal to v

0 

(t
2
 - t

1
) which is the magnitude of the displacement 

of the object from t
1
 to t

2
. Figure 3.2(b) is the 

velocity-time graph for an object moving with 
constant +ve acceleration (magnitude of velocity 
uniformly increasing with time). Figure 3.2(c) 
shows similar motion but the object has -ve 
acceleration, i.e., the acceleration is opposite 
to the direction of velocity which, therefore, 
decreases uniformly with time. The area under 
both the curves between two instants of time is 

the displacement of the object during that time 
interval (as shown below). Figure 3.2(d) shows 
the motion of an object having nonuniform 
acceleration. The average acceleration between 
t
1
 and t

2
 around t

0 
and the instantaneous 

accelerations at t
0
 for the object are shown by 

straight lines AB and CD respectively. 

v

v
0

Fig 3.2 (a): Object moving with constant 
velocity.

v v
1

v
2

Fig 3.2 (b): Object moving with velocity (v) 
along +ve x-axis with uniform acceleration 
along the same direction.

v
v

1

v
2

Fig 3.2 (c): Object moving with velocity (v) 
with negative uniform acceleration. 
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v

Fig. 3.2 (d): Object moving with nonuniform 
acceleration.

The area under the velocity-time curves 
in Figs. 3.2(a) to (d) can be written using the 
definition of integral given in  Chapter  2 as 

Area = 
t

t

t

t

t

t

dt
dx

dt
dt dx x x

1

2

1

2

1

2

2 1� � �� � � �v� � � � � ( ) ( )t t --- (3.6)

         = displacement of the object from t
1
 to t

2
.

Equations of Motion for Uniform 
Acceleration:

We can graphically derive Newton's 
equations of motion for an object moving with 
uniform acceleration. Consider an object having 
position x = 0 at t = 0. Let the velocity at t = 0 be 
u and at time t be v. The graphical representation 
of motion is shown in Fig. 3.3. The acceleration 
is given by the slope of the line AB. Thus,

Acceleration, a
u

t

u

t
�

�
�

�
�v v

0
 

  � � �v u at �   --- (3.7)

This is the first equation of motion. 

v

v

O

Fig.3.3: Derivation of equation of motion 
for motion with uniform acceleration.

As we know, the area under the curve in 
velocity-time graph is the displacement of 
the object. Thus displacement s = area of the 
quadrilateral OABD. = area of triangle ABC + 
area of rectangle OACD.

                            = 
1

2
v u t ut�� � �� �

Using Eq. (3.7),  s ut at� � � �� �
1

2
2

  --- (3.8)

This is the second equation of motion.

As the acceleration is constant, the 
velocity is increasing linearly with time and 
we can use average velocity v

av
, to calculate the 

displacement using Eq. (3.7) as    

 s t
u

t
u u

aav� �
��

�
�

�
�
� �

�� � �� �
v

v v v

2 2
 

 
� � �� � � �� � � /s u av2 2 2

 

 � � � � � .� � �v2 2 2u a s    --- (3.9)

Always Remember:

For uniform acceleration, for a rectilinear 
motion: 

 1. Velocity-time graph is linear.

 2. The area under the velocity-time graph 
between two instants of time t

1
 and t

2
 

gives the displacement of the object 
during that time interval. 

 3. The slope of the velocity-time graph is 
the acceleration of the object

For nonuniform acceleration in a rectilinear 
motion:

 1. Velocity-time graph is nonlinear. 

 2. The area under the velocity-time graph 
between two instants of time t

1
 and t

2
 

gives the displacement of the object 
during that time interval.

 3. The instantaneous acceleration of the 
object at a given time is equal to the 
slope of the tangent to the curve at that 
point.

 While using the concept of area under the 
curve, the origin of the velocity axis (for v-t 
graph) must be zero.
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This is the third equation of motion. Vector 
notation was not included here as the motion 
was rectilinear.

The most common example of uniform 
rectilinear motion with uniform acceleration of 
an object in day to day life is a freely falling 
body. When a body starts with zero velocity at 
a certain height from the ground and falls under 
the influence of the gravity of the  Earth , it is 
said to be in free fall. The only other force that 
acts on it is that of the air resistance or friction. 
For displacements of a few metres, this force is 
too small and can be neglected.  The acceleration 
of the body is the acceleration due to gravity 
which is along the vertical direction and  can be 
assumed to be constant over distances which are 
small compared to the radius of the  Earth . Thus 
the velocity and acceleration are both along the 
vertical direction and the motion is a uniform 
rectilinear motion with uniform acceleration. 

The distance travelled by an object starting 
from rest and having a uniform acceleration 
in successive seconds are in the ratio 
1:3:5:7... Consider a freely falling object.  
Let us calculate the distances travelled by 
it in equal intervals of time t

0
 (say). This 

can be done using the second equation 
of motion s = u t

0
 +(1/2) g t

0
2. The initial 

velocity is zero. Therefore, the distance 
travelled in the first t

0
 interval = (1/2) g 

t
0

2. For simplification let us write (1/2) 
g = A. Then the distance travelled in the 
first t

0
 time interval = d

1
 = At

0
2. In the time 

interval 2t
0
, the distance travelled = A(2t

0
)2. 

Hence, the distance travelled in the second 
t
0
 interval is d

2
 = A(4t

0
2 - t

0
2) = 3A t

0
2 = 3 

d
1
. The distance travelled in time interval 

3t
0
 = A(3t

0
)2. Thus, the distance travelled 

in the 3rd t
0
 interval = d

3
 = A(9t

0
2 – 4t

0
2) =  

5A t
0

2 = 5d
1
. Continuing, one can see that the 

distances d
1
, d

2
, d

3
 .. are in the ratio 1:3:5:7...

This is true for any rectilinear motion, 
starting from rest, with positive uniform 
acceleration.

Do you know ?

Example 3.2: A stone is thrown vertically 
upwards from the ground with a velocity 15 
m/s. At the same instant a ball is dropped from 
a point directly above the stone from a height 
of 30 m. At what height from the ground will 
the stone and the ball meet and after how much 
time? (Use g = 10 m/s2  for ease of calculation). 

Solution: Let us assume that the stone and 
the ball meet after time t

0
. The distances (not 

displacements) travelled by the stone and the 
ball in that time can be obtained from Eq. (3.8) 
as 

 s
stone

 = 15 t
0
 – 

1

2
 g t

0
2

 s
ball

 = 
1

2
 g t

0
2

When they meet, s
stone

 + s
ball

 = 30 

 15 t
0
 - 

1

2
 g t

0
2 + 

1

2
 g t

0
2 = 30

 t
0
 = 30/15 = 2 s

∴ s
stone

 = 15 (2) – �
1

2
 (10) (2)2 = 30 -20 =10 m

Thus the stone and the ball meet at a height of 
10 m.

8. Relative Velocity: You must have often 
experienced relative motion. The most striking 
example is when you are going in a train and 
another train travelling in the same direction 
along parallel tracks, overtakes you. If you look 
at that train, it actually seems to be moving 
much slower than what your train seemed 
to move and yet it is overtaking you. On the 
other hand if your train overtakes another 
train, travelling on a parallel track in the same 
direction, and you look at that train, you feel 
that your train has suddenly slowed down. Why 
does this happen? This is because when you 
look at the neighbouring train, you are actually 
experiencing relative motion, i.e., your motion 
with respect to the other train or the motion 
of the other train with respect to you. Thus, in 
the first case as the other train overtakes you 
what you perceive is the velocity of the train 
with respect to you, i.e., the difference in the 
velocities of the two trains which most often is 
much smaller than the velocity of your train. In 
the second case, you are moving faster but when 
you look at that train you only feel your velocity 
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relative to it and, therefore, your velocity 
appears to be lower than its actual value.  We 
can define relative velocity of object A with 
respect to object B as the difference between 
their velocities, i.e., 

 v
AB

 = v
A
 – v

B
    --- (3.10) 

Similarly, the velocity of B with respect to A is 
given by 
 v

BA
 = v

B
 – v

A    
--- (3.11) 

We assume that at time t = 0, A and B were 
at the same point x = 0. As they are travelling 
with different velocities, the distance between 
them will go on increasing with time in direct 
proportion to the difference in their velocities, 
i.e., the relative velocity between them. 

Example 3.3: An aeroplane A, is travelling 
in a straight line with a velocity of 300 km/hr 
with respect to Earth. Another aeroplane B, 
is travelling in the opposite direction with a 
velocity of 350 km/hr with respect to Earth. 
What is the relative velocity of A with respect 
to B? What should be the velocity of a third 
aeroplane C moving parallel to A, relative to 
the  Earth  if it has a relative velocity of 100 
km/hr with respect to A?

Solution: Let v
A
, v

B
 and v

C
 be the velocities of 

the three planes relative to the Earth. Relative 
velocity of A with respect to B = v

AB
 = v

A
 - v

B
 = 

300 – (-350) = 650 km/hr

Relative velocity of C with respect to A = v
CA 

= 
v

C
 - v

A
 = 100 km/hr.

Thus, v
C
 = v

CA
 + v

A
= 400 km/hr

3.3 Motion in Two Dimensions-Motion in a 
Plane:

So far we were considering rectilinear 
motion of an object. The direction of motion of 
the object was always along one straight line. 
Now we will consider the motion of an object 
in two dimensions, i.e., along a plane. Here, the 
direction of the force acting on an object will not 
be in the same line as its initial velocity. Thus, 
the velocity and acceleration will have different 
directions. For this reason we have to use vector 
equations. The definitions of various terms 
given in section 3.2 will remain valid except 
that the magnitude of the average velocity and 

the value of average speed will be different as 
the magnitude of the displacement need not 
be equal to the path length. For example, if a 
particle travels along a circle and comes back 
to its original position, its displacement will 
be zero but the path length will be equal to the 
circumference of the circle.

3.3.1 Average and Instantaneous Velocities:

For studying the motion of an object in two 
dimensions, for simplicity, we will take the plane 
to be the x-y plane. To describe the position of 
an object in this plane we will have to specify, 
both its x and y coordinates. The definitions 
of displacement, average and instantaneous 
velocities, average and instantaneous speeds 
and acceleration will be the same as those for 
rectilinear motion except that each of these 
quantities will now have components along the 
x and y directions. Let us assume the object to 
be at point P at time t

1 
as shown in Fig. 3.4 (a).

 

Fig. 3.4 (a) Motion in two dimensions

Fig. 3.4 (b) Instantaneous velocity
The position of the object will be described 

by its position vector r


1 �. This can be written in 
terms of its components along the x and y axes 
as 

∆y

∆x
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  r x i y j
� �

1 1 1� �ˆ    --- (3.12)

At time t
2
, let the position of the object be Q and 

its position vector be r


2

 r x i y j
� �

2 2 2� �ˆ    --- (3.13)

The displacement of the particle from t
1
 to t

2
 

shown by PQ, i.e., in time t = t
2
 – t

1
 is given by 

�r r r x x i y y j
� �� � �

� � � �� � � �� �2 1 2 1 2 1
ˆ ˆ  --- (3.14)

We can write the average velocity of the object 
as 





vav � �
�
�

�

�
�

�

�
� �

�
�

�

�
�

�

�
�

�
�

r

t

x x

t t
i

y y

t t
j� ˆ ˆ2 1

2 1

2 1

2 1  

v (v ) (v )av av av

� � �� �x yi j   --- (3.15) 

where, (v
av

)
x
 = (x

2
-x

1
)/(t

2
 - t

1
) and 

 (v
av

)
y
 = (y

2
-y

1
)/(t

2
 - t

1
)   --- (3.16)

 Average velocity is a vector whose 
direction is along ∆ r



 (see Eq. (3.2)), i.e., along 
the direction of displacement. In terms of its 
components, the magnitude (v) and direction 
(the angle θ  that the velocity vector makes with 
the x-axis) can be written as (see  Chapter  2) 

       v
av

 = v vav av� � � � �
x y

2 2

   and 

tan θ = (v
av

)
y  
/(v

av
)

x
   --- (3.17) 

Figure 3.4(b) shows the trajectory of an object 
moving in two dimensions. The instantaneous 
velocity of the object at point P along the 
trajectory is along the tangent to the curve at 
P. This is shown by the vector PQ. Its x and 
y components v

x
 and v

y
 are also shown in the 

figure.  

The instantaneous velocity of the object can be 
written in terms of derivative as (see Eq. 3.3)

�
� �

�v �
�

�
��

�

�
�� � � �

�
�

�
�
� � �

�
�

�
�
�� �

lim ˆ
t

r

t

dr

dt

dx

dt
i

dy

dt
j

0

�
�       

-- (3.18)

The magnitude and direction of the 
instantaneous velocity are given by 

v � �
�
�

�
�
� � �

�
�

�
�
�

dx

dt

dy

dt

2 2

�,    --- (3.19)

tan θ  = dy dt dx dt dy dx/ / / � � /� � � ��    --- (3.20)

which is the slope of the tangent to the curve 
at the point at which we are calculating the 
instantaneous velocity.

3.3.2 Average and Instantaneous Acceleration:

Again, the definitions are the same as those 
for rectilinear motion. Thus, the average 
acceleration ( a av

) of a particle between times 
t
1
 and t

2
 can be written as 



 

a
t t t t

i
t tav

x x y y�
�
�

�
�
�

�

�
�

�

�
� �

�

�
�

�
�

�

�
�

v v v v v v
2 1

2 1

2 1

2 1

2 1

2 1

ˆ ĵj ��- (3.21)

where v  and v2 1

 

  are the velocities of the 
particle at times t

2
 and t

1
 respectively. 



a
av

 = (a
av

)
x i   + (a

av
)

y
 j     --- (3.22),

(a
av

)
x
 and (a

av
)

y
 being the x and y components 

of the average acceleration.

The magnitude and direction of the acceleration 
are given by

a
av

 = a aav x av y
� � � � �2 2

�����  --- (3.23)

and

tan θ  = (a
av

)
y
/(a

av
)

x
    --- (3.24)

The instantaneous acceleration is given by (see 
Eq. (3.5))

� � �

�
a

t

d

dt

d

dt
i

d

dt
j

t

x y� �
�
�

�
�
� � � �

�
�

�
�
� �

�

�
�

�

�
��

lim ˆ ˆ
0

�
�

v v v v

-(3.25)

� �
�
�

�
�
� � �

�
�

�
�
� �

�

�
�

�

�
� �

�

�
�

�d

dt

dx

dt
i

d

dt

dy

dt
j

d x

dt
i

d y

dt
ˆ ˆ ˆ

2

2

2

2
��
� ĵ

     --- (3.26)

Thus, the x and y components of the 
instantaneous acceleration are respectively 
given by

a
x
 = d2x/dt2 and a

y
 = d2y/dt2   --- (3.27)

The magnitude and direction of the instantaneous 
acceleration are given by  

a = 
d x

dt

d y

dt

2

2

2 2

2

2
�

�
�

�

�
� �

�

�
�

�

�
�    --- (3.28),

and

 tan θ  = (dv
y
/dt)/(dv

x
/dt) = dv

y
/dv

x
  --- (3.29)

which is the slope of the tangent to the curve in 
velocity graph, i.e., a plot of v

y
 versus v

x
.

Example 3.4: The position vectors of three 
particles are given by

 x i j x t i t j
� � � � � �

1 25 5 5 5� � � �( () m,  )  m  and

  x t i t j
� � �

3
25 10� �( ) m as a function of time t. 

Determine the velocity and acceleration for 
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each, in SI units.

Solution: 


v1  
= d x


1
/dt = 0 as x



1
 does not depend 

on time t.

 Thus, the particle is at rest. 




v2 2= d x /dt = 5 i  + 5 j   m/s. v


2  does not 
change with time. � �a



2 0�

v  m / s2
2 25 5 5 2� � � , tan θ = 5/5 = 1 or θ = 

45°. Thus, the direction of v
2
 makes an angle of 

45° to the horizontal. 


v3 = d x dt


3 / =5 i  +20t j .

� � �v  m / s3
2 25 20( )t . Its direction is along

θ = tan-1
20

5

t�
�
�

�
�
�  with the horizontal.





a
d

dt
j3

3 220= =
v

 m / sˆ   

Thus, the particle 3 is getting accelerated along 
the y-axis at 20 m/s2.

3.3.3 Equations of Motion for an Object  
travellinging a Plane with Uniform 
Acceleration:

We have derived equations of motion for 
an object in rectilinear motion in section 3.2. 
We will now derive similar equations for a 
particle moving with uniform acceleration in 
two dimensions. Let the initial velocity of the 
object be u



 at t = 0 and its velocity at time t be
v


. As the acceleration is constant, the average 
acceleration and  the instantaneous acceleration 
will be equal. By using the definition of 
acceleration (Eq. (3.21)), we get  

  


a  = (


v  - 


u )/(t - 0) 

         or 


v  = 


u  + 


a t     --- (3.30) 
which is the same as Eq. (3.7) but is in vector 
form.

Let the displacement from time t = 0 to t 
be 


s . This can be calculated from the average 
velocity of the object during this time. For 

constant acceleration, 


vav =  
 

u + v

2  

� � � � �
��

�
��

�

�
�� �

� ��

�
��

�

�
��s t

u
t

u u a t
tav

 

    

v
v  

 
2 2  

∴ s  = 


u t + �
1

2



a t2    --- (3.31), 

which is the vector form of Eq. (3.8).

Eq. (3.30) and (3.31) can be resolved into their 
x and y components so as to get corresponding 
scalar equations as follows.

 
v

x
 = u

x
 + a

x
 t       --- (3.32)

and v
y
 = u

y
 + a

y
 t      --- (3.33)

 s u t a tx x x� �
1

2
2�    --- (3.34)

and  s u t a ty y y� ��
1

2
2
   --- (3.35)

We can see that Eqs. (3.32) and (3.34) 
involve only the x components of displacement, 
velocity and acceleration while Eqs. (3.33) and 
(3.35) involve only the y components of these 
quantities. Thus the two sets of equations are 
independent of each other and can be solved 
independently. We can thus see that the motion 
along the x direction of an object is completely 
controlled by the x components of velocity and 
acceleration while that along the y direction is 
completely controlled by the y components of 
these quantities. This makes it easy to study the 
motion in two dimensions which gets converted 
to two independent rectilinear motions along 
two perpendicular directions.

Always Remember:

Motion in two dimensions can be 
resolved into two independent motions in 
mutually perpendicular directions.

Example 3.5: The initial velocity of an object 

is 


u  = 5 i  + 10 j  m/s. Its constant acceleration 

is a  = 2 i + 3 j  m/s2. Determine the velocity 
and the displacement after 5 s.

Solution:

�

� ˆ ˆ ˆ ˆ ˆ ˆ

v u a 

    

  

� �

� �� � � �� �� � � �

t

i j i j i j5 10 2 3 5 15 25� � � � � �

� � �

� � � � �
�

v v v

     

      5 m / s

x y
2 2

2 215 25 225 625 850

29 1.

Direction of 


v  with x-axis is tan-1
v

v
y

x

�

�
�

�

�
� �  tan-1
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25

15
�
�
�

�
�
� �  tan-1(1.667) =  59o

s u t a

i j i j

 



� �

� �� �� � � �� �
�

 

   

   

1

2

5 10 5
1

2
2 3 5

50

2

2

�t

� ˆ ˆ ˆ ˆ

ˆ

� � � �

ii j�� � �87 5. �ˆ
 

� � � � �

� �

� �

s s sx y
2 2 2 250 87 5

2500 7656 25

10156 25 100 7

.

.

. .

     

     88 m  

at tan
.

'� � �1 87 5

50
60 15   with x-axis.

3.3.4 Relative Velocity: 

Relative velocity between two objects 
moving in a plane can be defined in a way similar 
to that for objects moving along a straight line.  
The relative velocity of object A having velocity  


vA
, with respect to the object B having velocity 



vB  , is given by

  


v AB =


vA  –


vB    --- (3.36)

Similarly, the relative velocity of object B with 
respect to object A , is given by

   


vBA =


vB -


vA    --- (3.37)

We can see that the magnitudes of the two 
relative velocities (v

AB
 and v

BA
) are equal and 

their directions are opposite.

Consider a number of objects A, B, C, D 
---- Y, Z, moving with respect to the other. Using 
the symbol v

AB
 for representing the velocity of 

A relative to B etc, the velocity of A relative to 
Z can be written as 

v v v v v v
     

AZ AB BC CD XY YZ� � � � � �...

Note the order of subscripts (A→B→C→D---
→Z).

Example 3.6: An aeroplane is travelling 
northward with a speed of 300 km/hr with 
respect to the Earth, when wind is blowing from 
east to west at a speed of 100 km/hr. What is 
the velocity of the aeroplane with respect to the 
wind?

Solution: Let the velocity of the aeroplane 
with respect to  Earth  be v



AE
, velocity of wind 

with respect to  Earth  be v


WE
.  The velocity 

of aeroplane with respect to wind, v


AW 
can be 

determined by the following expression:


vAW
 = 


vAE
 +


v EW
 = 


vAE
 - 


vWE 
= – 100 i +300 j , 

considering north along +y axis.

Magnitude  of  


vAW 
=  �10000 90000�� �  

= 100 10  km/hr, and its direction,

 � �
�
�
�
�

�
�
� � ��tan .1 300

100
71 6  is towards north of 

          east.

3.3.5 Projectile Motion:

Any object in flight after being thrown 
with some velocity is called a projectile and 
its motion is called projectile motion. We often 
see projectile motion in our day-to-day life. 
Children throw stones towards trees for getting 
tamarind pods or mangoes. A bowler bowls a 
ball towards a batsman in cricket, a basket ball 
player throws a ball towards the basket, all these 
are illustrations of projectile motion. In this 
motion, we have objects (projectiles) with given 
initial velocity, moving under the influence of 
the  Earth's gravitational field. The projectile 
has two components of velocity, one in the 
horizontal, i.e., along x-direction and the other 
in the vertical, i.e., along the y direction. The 
acceleration due to gravity acts only along the 
vertically downward direction. The horizontal 
component of velocity, therefore, remains 
unchanged as no force is acting in the horizontal 
direction, while the vertical component changes 
in accordance with laws of motion with  


a
x
 being 0 and 



a
y
 (= -



g ) being the downward 
acceleration due to gravity (upward is positive). 
Unless stated otherwise, retarding forces like air 
resistance, etc., are neglected for the projectile 
motion.

Let us assume that the initial velocity of 
the projectile is 



u  and its direction makes an 
angle θ  with the horizontal as shown in Fig. 
3.5. The projectile is thrown from the ground. 
We take the x-axis along the ground and y-axis 
in the vertical direction. The horizontal and 
vertical components of initial velocity are u 
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cosθ and u sinθ respectively. The horizontal 
component remains unchanged in absence of 
any force acting in that direction, while the 
vertical component changes according to (Eq. 
3.33) with a

y
 = -g and u

y
 = u sinθ. 

Fig.3.5: Trajectory of a projectile.

Thus, the components of velocity at time t are 
given by
 v

x
 = u

x
 = u cosθ  --- (3.38)

 v
y
 = u

y 
– gt = u sinθ – gt    --- (3.39)

As 0 < θ < 90°, the vertical component initially 
is in the upward direction. Similarly, the 
displacements of the projectile in the horizontal 
and vertical directions at time t, according to 
Eqs. (3.34) and (3.35) are given by 
 s

x
 = ucosθ.t    ---- (3.40)

 s
y
 = usinθ.t � �-

1

2
gt2   --- (3.41)

The direction of motion of the projectile at any 
time t makes an angle α with the horizontal 
which is given by 

 tan α = v
y
(t)/v

x
(t)    --- (3.42)

The vertical velocity keeps on decreasing 
as the projectile goes up and becomes zero 
at certain time. At that time the height of the 
projectile is maximum. The velocity then 
starts increasing in the downward direction as 
the particle is now falling under the  Earth 's 
gravitational field with a constant horizontal 
component of velocity. After a while the 
projectile reaches the ground. The trajectory of 
the object is shown in Fig. 3.5. The projectile 
is assumed to start from the origin of the 
coordinate system, O. The point of maximum 
height is indicated by P and the point where it 
falls down to the ground is indicated by Q. The 
horizontal and vertical components of velocity 

are shown at these points as well as at two 
intermediate points A and B, on the trajectory 
of the projectile. Note that the horizontal 
component of velocity remains the same, i.e., 
u

x
, while the vertical component decreases 

and becomes zero at P. After that it changes its 
direction, its magnitude increases and becomes 
equal to u

y
 again at Q. The horizontal distance 

covered by the projectile before it falls to the 
ground is OQ. We can derive the equation of 
the trajectory of the projectile as follows.

Let the time taken by the projectile to reach 
the maximum height be t

0
. The trajectory of the 

object being symmetrical, it can be shown by 
using equations of motion, that the object will 
take the same time in going up in air and coming 
down to the ground. At the highest point P, t = t

0 

and v
y
 = 0. Using Eq. (3.39), 

we get, 0 = u sinθ – gt
0

 t
0
 = (u sinθ)/g    --- (3.43)

∴ Total time in air = T = 2t
0
 is the time of flight. 

The total horizontal distance travelled by 
the particle in this time T can be obtained by 
using Eq. (3.40) as 

R = u
x
. T = u cosθ.2t

0
 = u cosθ. (2u sinθ)/g

           = 2 u
x
 u

y 
/g = u2(2 sinθ cosθ)/g 

           = u2 sin2θ/g    --- (3.44) 

This maximum horizontal distance 
travelled by the projectile is called the horizontal 
range R of the projectile and depends on the 
magnitude and direction of initial velocity of the 
projectile as well as the value of acceleration 
due to gravity at that place. 

For maximum horizontal range, 

sin2� � �� � � �1 2 90 450 0� �   or

Hence, R R
u

gmax� � �
2

045�for��  

The maximum height H reached by the 
projectile, having certain value of  θ, is the 
distance travelled along the vertical (y) 
direction in time t

0
. This can be calculated by 

using Eq. (3.41) as

H = u sinθ . t
0
 – 

1

2
g t0

2

�
�

�
�

�

�
�u

u

g
 

 
sin�

�sin
– 

1

2

2

g
u

g

 sin��

�
�

�

�
�

B
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               = u

g

u

g
y

2 2 2

2 2

sin �
�     --- (3.45)

All the above expressions of T, R, R
max

 and 
H are valid if the entire motion is governed 
only by gravitational acceleration g, i.e., 
retarding forces like air resistance are 
absent. However, in reality, it is never so. As 
a result, time of ascent t

a
 and time of decent 

t
d
 are not equal but t ta d> .

 
Also, in order 

to achieve maximum horizontal range for 
given initial velocity, the angle of projection 
should be greater than 450 and the range is 

much less than u

g

2

.

Do you know ?

Example 3.7: A stone is thrown with an 
initial velocity components of 20 m/s along 
the vertical, and 15 m/s along the horizontal 
direction. Determine the position and velocity 
of the stone after 3 s. Determine the maximum 
height that it will reach and the total distance 
travelled along the horizontal on reaching the 
ground. (Assume g = 10 m/s2)

Solution: The initial velocity of the stone in 
x-direction = u cosθ  = 15 m/s and in y-direction 
= u sinθ = 20 m/s.

After 3 s, v
x
 = u cosθ = 15 m/s and v

y
 = u sinθ – 

gt = 20 – 10(3)= - 10 m/s = 10 m/s downwards.

� � � � �

� � �
�

v v v

      

       m / s

x y
2 2 2 215 10

225 100 325

18 03.

tan α = v
y
/ v

x 
=

  
10/15 = 2/3 

∴α = tan-1 (2/3) = 33° 41' with the horizontal.

s
x
 = (u cosθ) t = 15×3 = 45 m, 

s
y
 = (u sinθ) t – 

1

2
gt2 = 20 × 3 - 5(3)2 = 15 m.

Thus the stone will be at a distance 45 m along 
horizontal and 15 m along vertical direction 
from the initial position after time 3 s. The 
velocity is 18.03 m/s making an angle 33° 41' 
with the horizontal. 

The maximum vertical distance travelled is 
given by H = (u sinθ)2/(2g) = 202/(2 ×10) = 20 m

Maximum horizontal distance travelled 

R = 2.u
x
.u

y
/g = 2(15)(20)/10 = 60 m 

Equation of motion for a projectile

We can derive the equation of motion of 
the projectile which is the relation between 
the displacements of the projectile along the 
vertical and horizontal directions. This can be 
obtained by eliminating t between the equations 
giving these displacements, i.e., Eqs. (3.40) and 
(3.41). 

As the projectile starts from x


 = 0, we can 
write s

x
 = x and s

y
 = y.   

� � � � � � �s u t t
s

u

x

ux
x 

  
cos

cos cos
�

� �
��� �

  

� � � � �

� � ��
�
�

�
�
� �

�
�

y u t gt

u
x

u
g

x

u

 

 
  

     

sin

sin
cos cos

�

�
� �

1

2

1

2

2

��
�
�
�

2

  

� � � � � �
�
�

�
�
�y x

g

u
xtan

cos
�

�
1

2 2 2
2

 
   

---  (3.46)

This is the equation of the trajectory of the 
projectile. Here, u and θ  are constants for the 
given projectile motion. The above equation is 
of the form 

 y = Ax + Bx2    --- (3.47)

which is the equation of a parabola. Thus, 
the path, i.e., the trajectory of a projectile is a 
parabola. 

3.4 Uniform Circular Motion:

An object moving with constant speed 
along a circular path is said to be in uniform 
circular motion (UCM).  Such a motion is only 
possible if its velocity is always tangential to its 
circular path, without change in its magnitude.

To change the direction of velocity, 
acceleration is a must. However, if the 
acceleration or its component is in line with 
the velocity (along or opposite to the velocity), 
it will always change the speed (magnitude of 
velocity) in which case it will not continue its 
uniform circular motion. Inorder to achieve both 
these requirements, the acceleration must be (i) 
perpendicular to the tangential velocity, (ii) of 
constant magnitude and (iii) always directed 
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towards the centre of the circular trajectory. 
Such an acceleration is called centripetal 
(centre seeking) acceleration and the force 
causing this acceleration is centripetal force.

Thus, in order to realize a circular motion, 
there are two requirements; (i) tangential 
velocity and (ii) centripetal force of suitable 
constant magnitude.

An example is the motion of the moon 
going  around the Earth in an early circular orbit 
as a result of the constant gravitational attraction 
of fixed magnitude felt by it towards the Earth. 

A parabola is a symmetrical open curve 
obtained by the intersection of a cone 
with a plane which is parallel to its side. 
Mathematically, the parabola is described 
with the help of a point called the focus and 
a straight line called the directrix shown in 
the accompanying figure. The parabola is 
the locus of all points which are equidistant 
from the focus and the directrix. The chord of 
the parabola which is parallel to the directrix 
and passes through the focus is called latus 
rectum of the parabola as shown in the 
accompanying figure.

 

Do you know ?

3.4.1 Period, Radius Vector and Angular   
Speed:  
Consider an object of mass m, moving with 

a uniform speed v, along a circle of radius r.  Let 
T be the time period of revolution of the object, 
i.e., the time taken by the object to complete one 
revolution or to travel a distance of 2πr. 
 Thus, T = 2πr/v 

 � � �Speed 
Distance

Time
v

2� r

T
  --- (3.48).

During circular motion of a point object, 
the position vector of the object from centre of 

the circle is the radius vector r . Its magnitude is 
radius r and it is directed away from the centre 
to the particle, i.e., away from the centre of 
the circle. As the particle performs UCM, this 
radius vector describes equal angles in equal 
intervals of time. At this stage we can define 
a new quantity called angular speed ω which 
gives the angle described by the radius vector, 
per unit time. It is analogous to speed which is 
distance travelled per unit time. 

During one complete revolution, the angle 
described is 2π and the time taken is period T. 
Hence, the angular speed

�
�

�
�

� � �
� �
�
�
�

�
�
�

�
Angle

time

2
2

2

T r r
v

v
�
  --- (3.49)

The unit of ω is radian/sec.

         

Fig.3.6: Uniform circular motion.

3.4.2 Expression for Centripetal Acceleration: 

Figure 3.6 shows a particle P performing a 
UCM in anticlockwise sense along a circle of 
radius r with angular speed ω  and period T. Let 
us choose the coordinates such that this motion 
is in the xy- plane having centre at the origin O. 
Initially (for simplicity), let the particle be at P

0
 

on the positive x-axis. At a given instant t, the 
radius vector of P makes an angle θ  with the 
x-axis. 

� �� �t  and so 
d

dt

�
��

x and y components of the radius vector 


r  will 
then be r rcos and sinθ θ� �  respectively.

� � � � � � �
� � �� � � � �� �

� � �

� �
r r i r j

r t i r t j

cos sin

cos sin

� �

� �      
   

 --- (3.50)

Time derivative of position vector r  gives 

P
0
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instantaneous velocity 


v  and time derivative 
of velocity 



v  gives instantaneous acceleration 


a . Magnitudes of r and ω  are constants.

� � � � � � � � �� �
� � � � �





v

     

dr

dt
r t i t j

r t i

� � � �

� � �

sin cos

sin cos

ˆ ˆ

ˆ tt j� �� �ˆ
     

--- (3.51)

� � � � � � � � �� �
� � � � �





a
d

dt
r t i t j

rcos t i r

v

      

� � � � �

� �

cos sinˆ ˆ

ˆ2 ssin � �t j r� �� � � �ˆ 2

     --- (3.52)

Here minus sign shows that the acceleration is 
opposite to that of 



r , i.e., towards the centre. 
This is the centripetal acceleration.  

The magnitude of acceleration,

 a r
r

� � �� �2
2v

v     --- (3.53)

The force providing this acceleration should also 
be along the same direction, hence centripetal. 

  � � � �F ma m r
�� � ��2   --- (3.54)

Magnitude of F m r
m

r
m� � �� �2

2v
v  - (3.55)

Conical pendulum

In a simple pendulum a mass m is suspended 
by a string of length l and moves along an arc of 
a vertical circle. If the mass instead revolves in 
a horizontal circle and the string which makes a 
constant angle with the vertical describes a cone 
whose vertex is the fixed point O, then mass-
string system is called a conical pendulum as 
shown in Fig. 3.7. In the absence of friction, the 
system will continue indefinitely once started.   

As shown in the figure, the forces acting 
on the bob of mass, m, of the conical pendulum 
are: (i) Gravitational force, mg, acting vertically 
downwards, (ii) Force due to tension T

��
 acting 

along the string directed towards the support. 
These are the only two forces acting on the bob. 

For the bob to undergo horizontal circular 
motion, (radius r) the resultant force must be 
centripetal, (directed towards the centre of the 
circle). In other words vertical gravitational 
force must be balanced.

Fig 3.7: Conical pendulum

Thus, we resolve tension T
��

 into two 
mutually perpendicular components. Let θ be 
the angle made by the string with the vertical at 
any position. The component T cos θ is acting 
vertically upwards. The inclination should be 
such that T cos θ = mg, so that there is no net 
vertical force.

The resultant force on the bob is then T 
sin θ which is radial or centripetal or directed 
towards centre O' T sin θ = mv2/r = mrω2.
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m r
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g
� �2    h l  --- (3.56)

where l is length of the pendulum and h is the 
vertical distance of the horizontal circle from 
the fixed point O. 

Example 3.8: An object of mass 50 g moves 
uniformly along a circular orbit with an 
angular speed of 5 rad/s. If the linear speed of 
the particle is 25 m/s, what is the radius of the 
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circle? Calculate the centripetal force acting on 
the particle. 

t = 0, the velocity  is given by u i j
� � �� �20 35

km/s. After one minute the velocity becomes 

v
� � �� � �20 35i j . What is the magnitude of the 
acceleration?

Solution: Magnitude of initial and final 
velocities =

� � �u ( ) ( )20 35

1625

2 2  m / s

=  m / s

= 40.3 m / s   

As the velocity reverses in 1 min, the time 
period of revolution is 2 min. 

T
r

u
r

uT

a
u

r

u

uT

u

T

� �

� � � �
� � �

� �
�

2

2

2 2 2 3 14 40 3

2 60

2 2
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. .

  giving 

22 11 2.  m s�

  

 1.  hyperphysics.phy-astr.gsu.edu/hbase/mot.
html#motcon

 2.  www.college-physics.com/book/mechanics

Internet my friend

1. Choose the  correct option.

 i) An object thrown from a moving bus is 
on example of 

  (A) Uniform circular motion 

  (B) Rectilinear motion

  (C) Projectile motion  

  (D) Motion in one dimension

 ii)  For a particle having a uniform circular 
motion, which of the following is constant

  (A) Speed (B) Acceleration 
(C) Velocity  (D) Displacement

 iii)  The bob of a conical pendulum under 
goes

  (A) Rectilinear motion in horizontal 

                 plane 

  (B) Uniform motion in a horizontal circle

Do you know ?

1.  The centripetal force is not one of the 
external forces acting on the object. 
As can be seen from above, the actual 
forces acting on the bob are T and mg, 
the resultant of these is the centripetal 
force. Conversely, if the resultant force 
is centripetal, motion must be circular.

 2.  In planetary motion, the gravitational 
force between Sun and the planets 
provides the necessary centripetal 
force for the circular motion.     

Solution: The linear speed and angular speed 
are related by v = ωr

∴ r = v/ω = 25/5 m = 5 m.

Centripetal force acting on the object = 
m

r

v2

=  
0 05 25

5

2. �
�  6.25 N.

Example 3.9: An object is travelling in a 
horizontal circle with uniform speed. At  

  (C) Uniform motion in a vertical circle  
(D) Rectilinear motion in vertical circle

 iv)  For uniform acceleration in rectilinear 
motion which of the following is not 
correct?

  (A) Velocity-time graph is linear 

  (B) Acceleration is the slope of velocity 
time graph

  (C) The area under the velocity-time 
graph equals displacement 

  (D) Velocity-time graph is nonlinear

 v)  If three particles A, B and C are having 
velocities v



A , v


B  and v


C  which of the 
following formula gives the relative 
velocity of A with respect to B

  (A) v v
 

A B+  ( B )  v v v
  

A C B� �  

Exercises Exercises
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(C) v v
 

A B-   (D) v v
 

C A-
2. Answer the following questions.

 i) Separate the following in groups of 
scalar and vectors: velocity, speed, 
displacement, work done, force, power, 
energy, acceleration, electric charge, 
angular velocity.

 ii) Define average velocity and instantaneous 
velocity. When are they same?

 iii) Define free fall.

 iv) If the motion of an object is described by 
x = f(t) write formulae for instantaneous 
velocity and acceleration.

 v) Derive equations of motion for a particle 
moving in a plane and show that the 
motion can be resolved in two independent 
motions in mutually perpendicular 
directions.

 vi) Derive equations of motion graphically 
for a particle having uniform acceleration, 
moving along a straight line.

 vii) Derive the formula for the range and 
maximum height achieved by a projectile 
thrown from the origin with initial 

velocity u


 at an angel θ to the horizontal.

 viii) Show that the path of a projectile is a 
parabola.

 ix) What is a conical pendulum? Show that its 

time period is given by 2�
�l

g

cos
, where l  

  is the length of the string, θ is the angle 
that the string makes with the vertical and 
g is the acceleration due to gravity.  

 x) Define angular velocity. Show that the 
centripetal force on a particle undergoing 
uniform circular motion is -mω2 r  .

3. Solve the following problems.      

 i)  An aeroplane has a run of 500 m to take 
off from the runway. It starts from rest 
and moves with constant acceleration to 
cover the runway in 30 sec. What is the 
velocity of the aeroplane at the take off ? 

      [Ans: 120 km/hr]

 ii). A car moving along a straight road with a 
speed of 120 km/hr, is brought to rest by 
applying brakes. The car covers a distance 
of 100 m before it stops. Calculate (i) the 
average retardation of the car (ii) time 
taken by the car to come to rest. 

     [Ans: 50/9 m/sec2, 6 sec]

 iii) A car travels at a speed of 50 km/hr for 30 
minutes, at 30 km/hr for next 15 minutes 
and then 70 km/hr for next 45 minutes. 
What is the average speed of the car?   
            [Ans: 56.66 km/hr] 

 iv) A velocity-time graph is shown in the 
adjoining figure.

-------------

v m/s
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  Determine:

  (i) initial speed of the car (ii) maximum 
speed attained by the car (iii) part of the 
graph showing zero acceleration (iv) part 
of the graph showing constant retardation 
(v) distance travelled by the car in first 6 
sec. 

    [Ans: (i) 0 (ii) 20 m/sec (iii) AB 

             (iv) BC (v) 90 m]

 v) A man throws a ball to maximum 
horizontal distance of 80 meters. Calculate 
the maximum height reached. 

               [Ans: 20 m]

 vi) A particle is projected with speed v
0
 at 

angle θ to the horizontal on an inclined 
surface making an angle � � � ( )�  to the 
horizontal. Find the range of the projectile 
along the inclined surface.  

       [Ans: R �
�2 0

2

2

v cos sin( )

gcos

� � �
�

] 
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 vii) A metro train runs from  station A to B to 
C. It takes 4 minutes in travelling from 
station A to station B. The train halts at 
station B for 20 s. Then it starts from 
station B and reaches station C in next 3 
minutes. At the start, the train accelerates 
for 10 sec to reach the constant speed of 
72 km/hr. The train moving at the constant 
speed is brought to rest in 10 sec. at next 
station. (i) Plot the velocity- time graph 
for the train travelling from the station 
A to B to C. (ii) Calculate the distance 
between the stations A, B and C.  
            [Ans: AB = 4.6 km, BC =3.4 km] 

 viii) A train is moving eastward at 10 m/sec. A 
waiter is walking eastward at 1.2m/sec; 
and a fly is flying toward the north across 
the waiter’s tray at 2 m/s. What is the 
velocity of the fly relative to  Earth   

        [Ans: 11.4 m/s, 10° due north of east] 

 ix) A car moves in a circle at the constant speed 
of 50 m/s and completes one revolution 
in 40 s. Determine the  magnitude of 
acceleration of the car. 

                  [Ans: 7.85 m s-2]

 x) A particle moves in a circle with constant 
speed of 15 m/s. The radius of the 
circle is 2 m. Determine the centripetal 
acceleration of the particle. 

                [Ans: 112.5 m s-2]

 xi) A projectile is thrown at an angle of 30° to 
the horizontal. What should be the range 
of initial velocity (u) so that its range 
will be between 40m and 50 m? Assume  
g = 10 m s-2.

        [Ans: 21.49 ≤ u ≤ 24.03 m s-2]

***
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4.1. Introduction: 
If an object continuously changes its 

position, it is said to be in motion. Mechanics 
is a branch of Physics that deals with motion. 
There are basically two branches of mechanics 
(i) Statics, where we deal with objects at rest 
or in equilibrium under the action of balanced 
forces and (ii) Kinetics, which deals with actual 
motion.

Kinetics can be further divided into two 
branches (i) Kinematics: In kinematics, we 
describe various motions without discussing 
their cause. Various parameters discussed in 
kinematics are distance, displacement, speed, 
velocity and acceleration. (ii) Dynamics: In 
dynamics we describe the motion along with its 
cause, which is force and/or torque. Parameters 
discussed in dynamics are momentum, force, 
energy, power, etc. in addition to those in 
kinematics.

It must be understood that motion is strictly 
a relative concept, i.e., it should always be 
described in context to a reference frame. For 
example, if you are in a running bus, neither 
you nor your co-passengers sitting in the bus are 
in motion in your reference, i.e., moving bus. 
However, from the ground reference, bus, you 
and all the passengers are in motion.

If not random, motions in real life may 
be understood separately as linear, circular 
or rotational, oscillatory, etc., or some 
combinations of these. While describing any 
of these, we need to know the corresponding 
forces responsible for these motions. Trajectory 
of any motion is decided by acceleration 



a   and 
the initial velocity 



u .

Laws of Motion4.

 1. What are different types of motions? 
 2.  What do you mean by kinematical equations 

and what are they? 
 3.  Newton’s laws of motion apply to most 

bodies we come across in our daily lives.
 4. All bodies are governed by Newton’s law of 

gravitation. Gravitation of the Earth results 
into weight of objects. 

Can you recall?

 a)  Linear motion: Initial velocity may be 
zero or non-zero. If initial velocity is zero 
(starting from rest), acceleration in any 
direction will result into a linear motion.

  If initial velocity is not zero, the 
acceleration must be in line with the initial 
velocity (along the same or opposite 
direction to that of the initial velocity) for 
resultant motion to be linear.

 b)  Circular motion: If initial velocity is 
not zero and acceleration is throughout 
perpendicular to the velocity, the resultant 
motion will be circular. 

 c)  Parabolic motion: If acceleration is 
constant and initial velocity is not in 
line with the acceleration, the motion is 
parabolic, e.g., trajectory of a projectile 
motion.

 d)  Other combinations of 


u  and 


a  will result 
into different more complicated motion.

4.2. Aristotle’s Fallacy: 

Aristotle (384BC-322BC) stated that 
“an external force is required to keep a body 
in uniform motion”. This was probably based 
on a common experience like a ball rolling 
on a surface stops after rolling through some 
distance. Thus, to keep the ball moving with 
constant velocity, we have to continuously 
apply a force on it. Similar examples can be 
found elsewhere, like a paper plane flying 
through air or a paper boat propelled with some 
initial velocity.

Correct explanation to Aristotle’s fallacy 
was first given by Galileo (1564-1642), which 
was later used by Newton (1643-1727) in 

 5.  Acceleration is directly proportional to 
force for fixed mass of an object.

 6.  Bodies possess potential energy and kinetic 
energy due to their position and motion 
respectively which may change. Their 
total energy is conserved in absence of any 
external force.
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formulating laws of motion. Galileo showed 
that all the objects stop moving because of 
some resistive or opposing forces like friction, 
viscous drag, etc. In these examples such forces 
are frictional force for rolling ball, viscous 
drag or viscous force of air for paper plane and 
viscous force of water for the boat.

Thus, in reality, for an uninterrupted 
motion of a body an additional external force is 
required for overcoming these opposing forces. 

What is then special about Newton’s 
first law if it is derivable from Newton’s 
second law?

Can you tell?

4.3.1. Importance of Newton’s First Law of 
          Motion:

 (i)  It shows an equivalence between ‘state 
of rest’ and ‘state of uniform motion 
along a straight line’ as both need a net 
unbalanced force to change the state. Both 
these are referred to as ‘state of motion’. 
The distinction between state of rest and 
uniform motion lies in the choice of the 
‘frame of reference’.

 (ii)  It defines force as an entity (or a physical 
quantity) that brings about a change in 
the ‘state of motion’ of a body, i.e., force 
is something that initiates a motion or 
controls a motion. Second law gives 
its quantitative understanding or its 
mathematical expression.

 (iii) It defines inertia as a fundamental property 
of every physical object by which the 
object resists any change in its state of 
motion. Inertia is measured as the mass 
of the object. More specifically it is called 
inertial mass, which is the ratio of net force 
( | F
��

|) to the corresponding acceleration  
(|a


|).

4.3.2. Importance of Newton’s Second Law 

          of Motion:

 (i)  It gives mathematical formulation for 
quantitative measure of force as rate of 
change of linear momentum.

Mathematical expression for force must be 

remembered as F
dp

dt

�� �
=  and not as F ma

�� �
=

F
dp

dt

d m

dt

dm

dt
m

d

dt

�� � �
� �

� �
� �

� � � � �
�
�

�
�
�

v
v

v

 

� � � �dm

dt
ma

 

v

For a given body, mass is constant, i.e., 
dm

dt  = 0  and only in this case, F ma
�� �

=
In the case of a rocket, both the terms 
are needed as both mass and velocity are 
varying. 

Do you know ?

1. Was Aristotle correct? 
2. If correct, explain his statement with an 

illustration. 
3. If wrong, give the correct modified 

version of his statement. 

Can you tell?

4.3. Newton’s Laws of Motion: 

First law: Every inanimate object continues to 
be in its state of rest or of uniform unaccelerated 
motion unless and until it is acted upon by an 
external, unbalanced force. 

Second law: Rate of change of linear momentum 
of a rigid body is directly proportional to the 
applied force and takes place in the direction of 
the applied force. On selecting suitable units, it 

takes the form F
dp

dt

�� �
=  (where F

��
 is the force 

and p
�� �

= mv  is the linear momentum.

Third law: To every action (force), there is an 
equal and opposite reaction (force). 

Discussion: From Newton’s second law of 

motion, F
dp

dt

d

dt
m

�� � �
� � � �� v . For a given body,

mass m is constant. 

� � �F m
d

dt
ma

�� � �v
… (for constant mass) 

Thus, if F
�� �

= 0,� v is constant. Hence if there 
is no force, velocity will not change. This is 
nothing but Newton’s first law of motion. 
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 (ii)  It defines momentum �
 

p m�� �v  instead 
of velocity as the fundamental quantity 
related to motion. What is changed by a 
force is the momentum and not necessarily 
the velocity. 

 (iii) Aristotle’s fallacy is overcome by 
considering resultant unbalanced force.

4.3.3 Importance of Newton’s Third Law of 

         Motion: 

 (i)  It defines action and reaction as a pair of 
equal and opposite forces acting along the 
same line.

 (ii)  Action and reaction forces are always on 
different objects. 

Consequences:

Action force exerted by a body x on body 
y, conventionally written as F yx

��
, is the force 

experienced by y.
As a result, body y exerts reaction force 

F xy

��
 on body x. 

In this case, body x experiences the force
F xy

��
 only while the body y experiences the force 

F yx

��
 only.

Forces F xy

��
 and F yx

��
 are equal in magnitude 

and opposite in their directions, but there is no 
question of cancellation of these forces as those 
are experienced by different objects.

Forces F xy

��
 and F yx

��
 need not be contact 

forces. Repulsive forces between two magnets 
is a pair of action-reaction forces. In this case 
the two magnets are not in contact. Gravitational 
force between  Earth  and moon or between  
Earth  and Sun are also similar pairs of non-
contact action-reaction forces.
Example 4.1: A hose pipe used for gardening is 
ejecting water horizontally at the rate of 0.5 m/s. 
Area of the bore of the pipe is 10 cm2. Calculate 
the force to be applied by the gardener to hold 
the pipe horizontally stationary.
Solution: If ejecting water horizontally is 
considered as action force on the water, the 
water exerts a backward force (called recoil 
force) on the pipe as the reaction force. 

 
F

dp

dt

d m

dt

dm

dt
m

d

dt

�� � �
� �

� �
� �

� �
v

v
v

As v, the velocity of ejected water is 

constant, F
dm

dt
=



v , where 
dm

dt
 is the rate at 

which mass of water is ejected by the pipe.

As the force is in the direction of velocity 

(horizontal), we can use scalars. � �F
dm

dt
v

dm

dt

d V

dt

d Al

dt
A

dl

dt
A�

� �
�

� �
� �� �

� �
� �v

         

where V = volume of water ejected

        A = area of cross section of bore = 10 cm2

ρ  = density of water = 1 g/cc

l = length of the water ejected in time t
dl

dt
= =v  velocity of water ejected 

       = 0.5 m/s = 50 cm/s

F
dm

dt
A A� � � � � � � �

� �

v v v v

     

� � 2 210 1 50

25000 0 25� . �dyne N

Equal and opposite force must be applied by 
the gardener.
4.4. Inertial and Non-Inertial Frames of 

Reference 

Consider yourself standing on a railway 
platform or a bus stand and you see a train or 
bus moving. According to you, that train or bus 
is moving or is in motion. As per the experience 
of the passengers in the train or bus, they are at 
rest and you are moving (in backward direction). 
Hence motion itself is a relative concept. To 
know or describe a motion you need to describe 
or define some reference. Such a reference 
is called a frame of reference. In the example 
discussed above, if you consider the platform as 
the reference, then the passengers and the train 
are moving. However, if the train is considered 
as the reference, you and platform, etc. are 
moving.

Usually a set of coordinates with a 
suitable origin is enough to describe a frame 
of reference. If position coordinates of an 
object are continuously changing with time 
in a frame of reference, then that object is in 
motion in that frame of reference. Any frame of 
reference in which Newton’s first law of motion 
is applicable is the simplest understanding of an 
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inertial frame of reference. It means, if there is 
no net force, there is no acceleration. Thus in an 
inertial frame, a body will move with constant 
velocity (which may be zero also) if there is no 
net force acting upon it. In the absence of a net 
force, if an object suffers an acceleration, that 
frame of reference is not an inertial frame and is 
called as non-inertial frame of reference.

Measurements in one inertial frame can be 
converted to measurements in another inertial 
frame  by a simple transformation, i.e., by 
simply using some velocity vectors (relative 
velocity between the two frames of reference).

Illustration: Imagine yourself inside a car 
with all windows opaque so that you can not 
see anything outside. Also consider that there 
is a pendulum tied inside the car and not set 
into oscillations . If the car just starts its motion 
(with reference to outside or ground), you will 
experience a jerk, i.e., acceleration inside the car 
even though there is no force acting upon you. 
During this time, the string of the pendulum  
may be steady, but not vertical. During time 
of acceleration, the car can be considered to 
be a non-inertial frame of reference. Later on 
if the car is moving with constant velocity 
(with reference to the ground), you will not 
experience any jerky motion within the car and 
the car can be considered as an inertial frame of 
reference. In this case, the pendulum string will 
be vertical, when not oscillating. 

The situations/phenomena that can be 
explained using Newton’s laws of motion 
fall under Newtonian mechanics. So far 
as our daily life situations are considered, 
Newtonian mechanics is perfectly applicable. 
However, under several extreme conditions 
we need to use some other theories.

Limitation of Newton’s laws of motion
 (i)  Newton’s laws are applicable only in the 

inertial frames of reference (discussed 
later). If the body is in a frame of 
reference of acceleration (a), we need to 
use a pseudo force �� �ma



 in addition 
to all the other forces while writing the 

Do you know ?

force equations.
 (ii)  Newton’s laws are applicable for point 

objects.
 (iii) Newton’s laws are applicable to rigid 

bodies. A body is said to be rigid if the 
relative distances between its particles 
do not change for any deforming force. 

  (iv) For objects moving with speeds 
comparable to that of light, Newton’s 
laws of motion do not give results that 
match with the experimental results and 
Einstein's special theory of relativity has 
to be used.

 (v) Behaviour and interaction of objects 
having atomic or molecular sizes cannot 
be explained using Newton’s laws of 
motion, and quantum mechanics has to 
be used.

A rocket in intergalactic space (gravity free 
space between galaxies) with all its engines shut 
is closest to an ideal inertial frame. However, 
Earth’s  acceleration in the reference frame of 
the Sun is so small that any frame attached to 
the  Earth  can be used as an inertial frame for 
any day-to-day situation or in our laboratories.

4.5 Types of Forces:

4.5.1. Fundamental Forces in Nature: 

All the forces in nature are classified into 
following four interactions that are termed as 
fundamental forces. 

 (i)  Gravitational force: It is the attractive 
force between two (point) masses 
separated by a distance. Magnitude of 
gravitational force between point masses 
m

1
 and m

2
 separated by distance r is given 

by F
Gm m

r
= 1 2

2  

  where G = 6.67×10-11 SI units. Between 
two point masses (particles) separated by 
a given distance, this is the weakest force 
having infinite range. This force is always 
attractive. Structure of the universe is 
governed by this force.

  Common experience of this force for us is 
gravitational force exerted by  Earth  on 
us, which we call as our weight W. 
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  where M and R represent respectivily 

mass and radius of the Earth. Distance 
between ourselves and Earth is taken as 
radius of the Earth when we are on the 
surface of the Earth because our size is 
negligible as compared to radius of the 
Earth (6.4×106 m).
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  ≅ 9.8 m/s2 = g = gravitational acceleration 
or gravitational field intensity.

  We feel this force only due to normal 
reaction from the surface of our contact 
with Earth.

      All individual bodies also exert 
gravitation force on each other but it is 
too small compared to that by the Earth. 
For example, mutual gravitational force 
between two SUMO wrestlers, each 
of mass 300 kg, assuming the distance 
between them is 0.5 m, will be 

   

  This force is negligibly small in 
comparison to the weight of each SUMO 
wrestler ≅  3000 N.

 (ii)  Electromagnetic (EM) force: It is an 
attractive or repulsive force between 
electrically charged particles. Earlier, 
electric and magnetic forces were 
thought to be independent. After the 
demonstrations by Michael Faraday 
(1791-1867) and James Clerk Maxwell 
(1831-1879), electric and magnetic 
forces were unified through the theory 
of electromagnetism. These forces are 
stronger than the gravitational force. 
Our life is practically governed by these 
forces. Majority of forces experienced in 
our daily life, such as force of friction, 
normal reaction, tension in strings, 

Weak interaction force:
The radioactive isotope C13 is 

converted into N14 in which a neutron is 
converted into a proton. This property is 
used in carbon dating to determine the age 
of a sample.

In radioactive beta decay, the nucleus 
emits an electron (or positron) and an 
uncharged particle called neutrino. There 
are two types of β-decay, β+ and β-. 
During β+decay, a proton is converted 
into a neutron (accompanied by positron 
emission) and during � � decay a neutron 
is converted into a proton (accompanied by 
electron emission).

Another most interesting illustration 
of weak forces is fusion reaction in the 
core of the Sun. During this, protons are 
converted into neutrons and a neutrino is 
emitted due to energy balance. In general, 
emission of a neutrino is the evidence 
that there is conversion of a proton into a 
neutron or a neutron into a proton. This is 
possible only due to weak forces.

collision forces, elastic forces, viscosity 
(fluid friction), etc. are EM in nature. 
Under the action of these forces, there 
is deformation of objects that changes 
intermolecular distances thereby resulting 
into reaction forces. 

 (iii) Strong (nuclear) force: This is the strongest 
force that binds the nucleons together 
inside a nucleus. Though strongest, it is a 
short range (< 10-14 m) force. Therefore is  
very strong attractive force and is charge 
independent.

 (iv)  Weak (nuclear) force: This is the 
interaction between subatomic particles 
that is responsible for the radioactive 
decay of atoms, in particular beta 
emission. The weak nuclear force is not as 
weak as the gravitational force, but much 
weaker than the strong nuclear and EM 
forces. The range of weak nuclear force is 
exceedingly small, of the order of 10-16 m.
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Example 4.2. Three identical point masses are 
fixed symmetrically on the periphery of a circle. 
Obtain the resultant gravitational force on any 
point mass M at the centre of the circle. Extend 
this idea to more than three identical masses 
symmetrically located on the periphery. How 
far can you extend this concept?

Solution: 

 (i)  Figure below shows three identical point 
masses m on the periphery of a circle of 
radius r. Mass M is at the centre of the 
circle. Gravitational forces on M due 
to these masses are attractive and are 
directed as shown. 

  In magnitude, F
MA

 = F
MB

 = F
MC

 = 
GMm

r 2

  
  Forces F

MB
 and F

MC
 are resolved along 

F
MA

 and perpendicular to F
MA

 as shown. 
Components perpendicular to F

MA
 cancel 

each other. Components along F
MA

 are 

F
MB

 cos 600 = F
MC

 cos 600 =  
1

2
FMA each. 

Magnitude of their resultant is F
MA

 and its 
direction is opposite to that of F

MA
. Thus, 

the resultant force on mass M is zero.

 (ii)  For any even number of equal masses, 
the force due to any mass m is balanced 
(cancelled) by diametrically opposite 
mass. For any odd number of masses, as 
seen for 3, the components perpendicular 
to one of them cancel each other while the 
components parallel to one of these add up 
in such a way that the resultant is zero for 
any number of identical masses m located 
symmetrically on the periphery. 

 (iii) As the number of masses tends to 
infinity, their collective shape approaches 
circumference of the circle, which is 
nothing but a ring. Thus, the gravitational 

Do you know ?

Unification of forces: Newton unified 
terrestrial (related to Earth and hence to 
our daily life) and celestial (related to 
universe) domains under a common law of 
gravitation.  The experimental discoveries 
of Oersted (1777-1851) and Faraday showed 
that electric and magnetic phenomena are in 
general inseparable leading to what is called 
‘EM phenomenon’. Electromagnetism 
and optics were unified by Maxwell with 
the proposition that light is an EM wave.  
Einstein attempted to unify gravity and 
electromagnetism under general relativity 
but could not succeed. The EM and the weak 
nuclear force have now been unified as a 
single ‘electro-weak’ force.

force exerted by a ring mass on any other 
mass at its centre is zero.

In three-dimensions, we can imagine a 
uniform hollow sphere to be made up of infinite 
number of such rings with a common diameter. 
Thus, the gravitational force for any mass kept 
at the centre of a hollow sphere is zero.

4.5.2. Contact and Non-Contact Forces: 

For some forces, like gravitational force, 
electrostatic force, magnetostatic force, etc., 
physical contact is not an essential condition. 
These forces exist even if the objects are distant 
or physically separated. Such forces are non-
contact forces.

Forces resulting only due to contact are 
called contact forces. All these are EM in nature, 
arising due to some deformation. Normal 
reaction, forces occurring during collision, 
force of friction, etc., are contact forces. There 
are two common categories of contact forces. 
Two objects in contact, while exerting mutual 
force, try to push each other away along their 
common normal. Quite often we call it as 
‘normal reaction’ force or ‘normal’ force. While 
standing on a table, we push the table away from 
us (downward) and the table pushes us away 
from it (upward) both being equal in magnitude 
and acting along the same ‘normal’ line. 
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Force of friction is also a contact force that 
arises whenever there is a relative motion or 
tendency of relative motion between surfaces 
in contact. This is the parallel (or tangential) 
component of the reaction force. In this case, 
the molecules of surfaces in contact, which have 
developed certain equilibrium, are required to 
be separated.

4.5.3 Real and Pseudo Forces: 

Consider ourselves inside a lift (or 
elevator). When the lift just starts moving up 
(accelerates upward), we feel a bit heavier as 
if someone is pushing us down. This is not 
imaginary or not just a feeling. If we are standing 
on a weighing scale inside this lift, during this 
time the weighing scale records an increase in 
weight. During travelling with uniform upward 
velocity no such change is recorded. While 
stopping at some upper floor, the lift undergoes 
downward acceleration for decreasing the 
upward velocity. In this case the weighing scale 
records loss in weight and we also feel lighter. 
These extra upward or downward forces are (i) 
Measurable, means they are not imaginary, (ii) 
not accountable as per Newton’s second law in 
the inertial frame and (iii) not among any of the 
four fundamental forces. 

When we are inside a bus such forces 
are experienced when the bus starts to move 
(forward acceleration), when the bus is about 
to stop (backward acceleration) or takes a turn 
(centripetal acceleration). In all these cases 
we are inside an accelerated system (which is 
our frame of reference). If a force measuring 
device is suitably used – like the weighing scale 
recording the change in weight – these forces 
can be recorded and will be found to be always 
opposite to the acceleration of your frame 
of reference. They are also exactly equal to  
-m


a , where m is our mass and 


a  is acceleration 
of the system (frame of reference). 

We have already defined or described real 
forces to be those which obey Newton’s laws 
of motion and are one of the four fundamental 
forces. Forces in above illustrations do not 
satisfy this description and cannot be called real 
forces. Hence these are called pseudo forces. 

In mathematics we define a number to be 
real if its square is zero or positive. Solution 
set of equations like x2 - 6x + 10 = 0 does 
not satisfy the criterion to be a real number. 
Such numbers are complex numbers which 
include i � �1  along with some real 
part. It means every non-real need not be 
imaginary as in literal verbal sense.

Pseudo in this case does not mean imaginary 
(because these are measurable with instruments) 
but just means non-real. These forces are 
measured to be �� �ma



. Hence, a term �� �ma


 
added to resultant force enables us to apply 
Newton’s laws of motion to a non-inertial frame 
of reference of acceleration 



a . Negative sign 
refers to their direction, which is opposite to 
that of the acceleration of the reference frame.

As per the illustration of the lift with 
downward acceleration 



a , the weight 
experienced will be 



 

W mg ma� � �� �  

As  

g a� � and  are along the same direction 
in this case, W mg ma� � . This explains the 
feeling of a loss in weight.

During upward acceleration, say a1

���
, we 

have, W mg ma1 1

��� � �
� � �� �

In this case, g a
�� ���

  and� 1  are oppositely 
directed. � � � �� � � �W mg ma mg ma1 1 1  that 
explains gain in weight or existence of extra 
downward force.

Example 4.3: A car of mass 1.5 ton is running 
at 72 kmph on a straight horizontal road. On 
turning the engine off, it stops in 20 seconds. 
While running at the same speed, on the same 
road, the driver observes an accident 50 m in 
front of him. He immediately applies the brakes 
and just manages to stop the car at the accident 
spot. Calculate the braking force.

Solution: On turning the engine off, 

u t s

a
u

t

� � �

� �
�

� �

�

�

20 0 20

1

1

2

� ,� , � �

�

m�s

m�s

 v  

v

This is frictional retardation (negative 
acceleration).

After seeing the accident, 
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�

�
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1
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� �

m�s m

m�s

 v  

v

This retardation is the combined effect of 
braking and friction. Thus, braking retardation 
� � � �4 1 3 2�m�s . 

∴Braking force = mass × braking 
retardation = 1500 × 3 = 4500 N 

4.5.4. Conservative and Non-Conservative 
Forces and Concept of Potential 
Energy: 

Consider an object lying on the ground 
is lifted and kept on a table. Neglecting air 
resistance, the amount of work done is the 
work done against gravitational force and 
it is independent of the actual path chosen 
(Remember, as there is no air resistance, 
gravitational force is the only force). Similarly, 
while keeping the same object back on the 
ground from the table, the work is done by the 
gravitational force. In either case the amount of 
work done is the same and is independent of the 
actual path chosen. The work done by force F

��
 

in moving the object through a distance dx can 
be mathematically represented as dW  = F dx

�� �
.  

=-dU or dU F dx� �
�� �

. . 

If work done by or against a force is 
independent of the actual path, the force is said 
to be a conservative force. During the work 
done by a conservative force, the mechanical 
energy (sum of kinetic and potential energy) 
is conserved. In fact, we define the concept 
of potential at a point or potential energy 
(in the topic of gravitation) with the help of 
conservative forces only. The work done by or 
against conservative forces reflects an equal 
amount of change in the potential energy. The 
corresponding work done is used in changing 
the position or in achieving the new position in 
the gravitational field. Hence, potential energy 
is often referred to as the energy possessed on 
account of position. 

In the illustration given above, the work 
done is reflected as increase in the gravitational 
potential energy when the displacement is 

against the (gravitational) force. Same amount 
of potential energy is decreased when the 
displacement is in the direction of force. In 
either case it is independent of the actual path 
but depends only upon the initial and final 
positions. This change in the potential energy 
takes place in such a way that the mechanical 
energy is conserved.

As discussed above, increase in the 

potential energy, dU dxF� �
�� �

.  or U dxF� ��
�� �

.  
where F

��
 is a conservative force. This concept, 

will be described in details in Chapter 5 on 
Gravitation in context of gravitational potential 
energy and gravitational potential.

During this process, if friction or air 
resistance is present, additional work is 
necessary against the frictional force (for the 
same displacement). This work is strictly path 
dependent and not recoverable. Such forces 
(like friction, air drag, etc.) are called non-
conservative forces. Work done against these 
forces appears as heat, sound, light, etc. The 
work done against non-conservative forces 
is not recoverable even if the path is exactly 
reversed.

4.5.5. Work Done by a Variable Force: 

The popular formula for calculating work 
done is W s F sF� � �

�� �
  cos�  where θ is the 

angle between the applied force F
��

 and the 
displacement 



s .

This formula is applicable only if both 
force F

��
and displacement 



s  are constant and 
finite. In several real-life situations, the force 
is not constant. For example, while lifting an 
object through several thousand kilometres, the 
gravitational force is not constant. The viscous 
forces like fluid resistance depend upon the 
speed, hence, quite often are not constant with 
time. In order to calculate the work done by 
such variable forces we use integration.
Illustration: Figure 4.1(a) shows variation 
of a force F

��
 plotted against corresponding 

displacements in its direction 


s . As the 
displacement is in the direction of the applied 
force, vector nature is not used. We need to 
calculate the work done by this force during 
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displacement from s
1
 to s

2
. As the force is 

variable, using W F s s� �� �2 1  directly is not 
possible. In order to use integration, let us 
divide the displacement into a large number of 
infinitesimal (infinitely small) displacements. 
One of such displacements is ds. It is so small 
that the force F is practically constant for this 
displacement. Practically constant means the 
change in the force is so small that the change 
can not be recorded. The shaded strip shows one 
of such displacements. As the force is constant, 
the area of this strip F.ds is the work done dW 
for this displacement. Total work done W for 
displacement s s2 1�� �  can then be obtained by 
using integration. 

� � �W F ds
s

s

1

2

.

 

Method of integration is applicable if the 

exact way of variation in F
��

 with 


s  is known 
and that function is integrable.

The area under the curve between s
1
 and 

s
2
 also gives the work done W (if the force axis 

necessarily starts with zero), as it consists of all 
the strips of ds between s

1
 and s

2
. In Fig. 4.1(b), 

the variation in the force is linear. In this case, 
the area of the trapezium AS

1
S

2
B gives total 

work done W.

 

Fig 4.1 (a): Work done by nonlinearly 
varying force. 

 

Fig 4.1 (b): Work done by linearly varying 
force.

Example 4.4: Over a given region, a force (in 
newton) varies as F = 3x2 - 2x + 1. In this region, 
an object is displaced from x

1
 = 20 cm to x

2 
=

 
40 

cm by the given force. Calculate the amount of 
work done.

Solution:

          

W F ds x x dx

x x x

s

s

� � � �

� ��� ���

� �
1

2

0 2

0 4
2

3 2

0 2

0 4

3 2 1. ( )
.

.

.

.
     

          

� � ��� �� � � ��� ��
� � �

0 4 0 4 0 4 0 2 0 2 0 2

0 304 0 168 0 136

3 2 3 2. . . . . .

. . . �J  
4.6. Work Energy Theorem:

If there is a decrease in the potential energy 
(like a body falling down) due to a conservative 
force, it is entirely converted into kinetic energy. 
Work done by the force then appears as kinetic 
energy. Vice versa if an object is moving 
against a conservative force its kinetic energy 
decreases by an amount equal to the work done 
against the force. This principle is called work-
energy theorem for conservative forces.

Case I: Consider an object of mass m moving 
with velocity 



u  experiencing a constant 
opposing force F

��
 which slows it down to 



v  during displacement 


s . As 


u  and F
��

 are 
oppositely directed, the entire motion will be 
along the same line. In this case we need not use 
the vector form, just ±  signs should be good 
enough.

If a
F

m
=  is the acceleration, we can write

the relevant equation of motion as v2 - u2 = 2 
(-a)s (negative acceleration for opposing force) 

Multiplying throughout by  m/2, we get

 

1

2

1

2
2 2mu m ma s F s� � � � �v . .

Left-hand side is decrease in the kinetic 
energy and the right-hand side is the work done 
by the force. Thus, change in kinetic energy is 
equal to work done by the conservative force, 
which is in accordance with work-energy 
theorem.

Case II: Accelerating conservative force along 
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with a retarding non-conservative force:

An object dropped from some point at 
height h falls down through air. While coming 
down its potential energy decreases. Equal 
amount of work is done in this case also. 
However, this time the work is not entirely 
converted into kinetic energy but some part 
of it is used in overcoming the air resistance. 
This part of energy appears in some other forms 
such as heat, sound, etc. In this case, the work-
energy theorem can mathematically be written 
as � �     PE KE Wair resistance� �

(Decrease in the gravitational P.E. =  
Increase in the kinetic energy + work done 
against non-conservative forces). Magnitude of 
air resistance force is not constant but depends 
upon the speed hence it can be written as ∫F ds

�� ���
.  

as seen during work done by (or against) a 
variable force.

4.7. Principle of Conservation of Linear 

      Momentum:

According to Newton’s second law, 
resultant force is equal to the rate of change of 

linear momentum or F
dp

dt

�� �
=

In other words, if there is no resultant 
force, the linear momentum will not change 
or will remain constant or will be conserved. 

Mathematically, if is constant 

Always remember
Isolated system means absence of 

any external force. A system refers to a set 
of particles, colliding objects, exploding 
objects, etc. Interaction refers to collision, 
explosion, etc. During any interaction 
among such objects the total linear 
momentum of the entire system of these 
particles/objects is constant. Remember, 
forces during collision or during explosion 
are internal forces for that entire system. 

During collision of two particles, the 
two particles exert forces on each other. If 
these particles are discussed independently, 
these are external forces. However, for the 
system of the two particles together, these 
forces are internal forces.

(or conserved). This leads us to the principle of 
conservation of linear momentum which can be 
stated as “The total momentum of an isolated 
system is conserved during any interaction.” 

Systems and free body diagrams:

 Mathematical approach for application of 
Newton’s second law: 

Fig 4.2 (a): System for illustration of free 
body diagram.

Consider the arrangement shown in Fig.4.2 
(a). Pulleys P

1
, P

3
 and P

4
 are fixed, while P

2
 is 

movable. Force F = 100 N, applied at an angle 
60° with the horizontal is responsible for the 
motion, if any. Contact surface of the 5 kg 
mass offers a constant opposing force F = 10 
N. Except this, there are no resistive forces 
anywhere. 

Discussion: Until 1 kg mass reaches the pulley 
P

1
, the motion of 1 kg and 2 kg masses is 

identical. Thus, these two can be considered 
to be a single system of mass 3 kg except for 
knowing the tension T

3
. The forces due to 

tension in the string joining them are internal 
forces for this system.

All masses except the 3 kg mass are 
travelling same distance in the same time. 
Thus, their accelerations, if any, have same 
magnitudes. If the string S connecting 1 kg and 
4 kg masses moves by x, the lower string S

1 

holding the 3 kg mass moves through x/2.  

Free body diagrams (FBD): A free body 
diagram refers to forces acting on only one 
body at a time, and its acceleration. 

Free body diagram of 2 kg mass: Let a be 
its upward acceleration. According to Newton’s 
second law, it must be due to the resultant 
vertical force on this mass. To know this force, 
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we need to know all the individual forces acting 
on this mass. The agencies exerting forces on 
this mass are Earth (downward force 1g) and 
force due to the tension T

3
. 

In this case, the lower half of the string 

the vertical forces must cancel. Therefore, 
along the vertical direction, 

N + F sin 60° = 5g  

Along the horizontal direction, 
T F T1

010 60� � � � �� opposing�force cos cos600

Similar equations can be written for all 
the masses and also for the movable pully. On 
solving these equations simultaneously, we can 
obtain all the necessary quantities.

Example 4.5: Figure (a) shows a fixed pulley. 
A massless inextensible string with masses m

1
 

and m
2
 > m

1
 attached to its two ends is passing 

over the pulley. Such an arrangement is called 
an Atwood machine. Calculate accelerations of 
the masses and force due to the tension along 
the string assuming axle of the pulley to be 
frictionless. 

                Fig. (a).

Solution: Method I: Direct method: As  
m

2
 > m

1
, mass m

2
 is moving downwards and 

mass m
1
 is moving upwards.

Net downward force

 � � � � � � � � �� �F m g m g m m g2 1 2 1

As the string is inextensible, both the 
masses travel the same distance in the same 
time. Thus, their accelerations are numerically 
the same (one upward, other downward). Let it 
be a.

Thus, total mass in motion, M m m� �2 1

� � �a
F

M
 

 

m m

m m
g2 1

2 1

�
�

�

�
�

�

�
�

For mass m
1
, the upward force is the force 

due to tension T and downward force is mg. It 
has upward acceleration a. Thus, T- m

1 
g = ma 

∴ T = m
1
(g + a)  

Using the expression for a, we get 

Practical tip: Easiest way to know the 
direction of forces due to tension is to 
put an X-mark on the string. Two halves 
of this cross indicate the directions of the 
forces exerted by the string on the bodies 
connected to either parts of the string.

is connected to the 2 kg mass. The direction 
of T

3
 for lower part of the string is upwards 

as shown in the Fig. 4.2 (b). Upper part of the 
string is connected to the 1 kg mass. Thus, the 
direction of T

3
 for 1 kg mass will be downwards. 

However, it will appear only for the free body 
diagram of the 1 kg mass and will not appear 
in the free body diagram of 2 kg mass. Hence, 
the free body diagram of the 2 kg mass will 
be as follows: Its force equation, according to 
Newton’s second law will then be T

3 
- 2g = 2a.

  

Fig 4.2 (b): Free body 
diagram for 2 kg mass.

  

       

Fig 4.2 (c): Free 
body diagram for  
5 kg mass.

Free body diagram of mass 5 kg: Its 
horizontal acceleration is also a, but towards 
right. The force exerting agencies are  Earth  
(force 5g downwards), contact surface (normal 
force N, vertically upwards and opposing force 
F = 10 N, towards left), and the two strings 
on either side (Forces due to their tensions T 
and T

1
). All these are shown in its free body 

diagrams in Fig. 4.2 (c). On resolving the force 
F along the vertical and horizontal directions, 
the free body diagram of 5 kg mass can be 
drawn as explained below. 

As this mass has only horizontal motion, 
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T =  �
2 1 2

1 2

m m

m m
g

�
�

�
�

�

�
�

Method II: (Free body equations)

     

       Fig. (b)        Fig. (b)

Free body diagrams of m
1
 and m

2
 are as 

shown in Figs. (b) and (c). 

Thus, for the first body, T m g m a� �1 1  --- (I)

For the second body, m g T m a2 2� �     --- (II)

Adding (I) and (II), and solving for a, 

we get, a
m m

m m
g�

�
�

�

�
�

�

�
�2 1

2 1

        --- (III)

       Solving Eqs. (II) and (III) for T, we get, 

 
T = m (g -a)2 �

�
�

�
�

�

�
��

2 1 2

1 2

m m

m m
g

 

4.8. Collisions: 

During collisions a number of objects 
come together, interact (exert forces on each 
other) and scatter in different directions.    

Fig. 4.3 (a): Head on collision-before collision. 

                         

Fig. 4.3 (b): Head on collision-during impact. 

            

Fig. 4.3 (c): Head on collision-after collision. 

4.8.1. Elastic and inelastic collisions: 

During a collision, the linear momentum 
of the entire system of particles is always 
conserved as there is no external force acting on 
the system of particles. However, the individual 
momenta of the particles change due to mutual 
forces, which are internal forces. 

� �� � 

p pinitial final , during any collision 

(or explosion), where p
��

's are the linear 
momenta of the particles.

However, kinetic energy of the entire 
system may or may not conserve. 

Collisions can be of two types: elastic 
collisions and inelastic collisions.

Elastic collision: A collision is said to elastic if 
kinetic energy of the entire system is conserved 
during the collision (along with the linear 
momentum). Thus, during an elastic collision,

� ��K E K Einitial final. . . .
 

An elastic collision is impossible in 
daily life. However, in many situations, the 
interatomic or intermolecular collisions are 
considered to be elastic (like in kinetic theory 
of gases, to be discussed in the next standard). 

Inelastic Collision: A collision is said to be 
inelastic if there is a loss in the kinetic energy 
during collision, but linear momentum is 
conserved. The loss in kinetic energy is either 
due to internal friction or vibrational motion of 
atoms causing heating effect. Thus, during an 
inelastic collision, 

� ��K E K Einitial final. . . .
.

During an explosion as energy is supplied 
internally. Thus,

 � ��K E K Efinal initial. . . . . 

As stated earlier, � �� 

p pinitial final  for 
inelastic collisions or explosion also. In fact, 
this is always the first equation for discussing 
these interactions or while solving numerical 
questions.

4.8.2. Perfectly Inelastic Collision: 

This is a special case of inelastic collisions. 
If colliding bodies join together after collision, 
it is said to be a perfectly inelastic collision. 
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In other words, the colliding bodies have a 
common final velocity after a perfectly inelastic 
collision. Being an inelastic collision, obviously 
there is a loss in the kinetic energy of the system 
during a perfectly inelastic collision. In fact, the 
loss in kinetic energy is maximum in perfectly 
inelastic collision.

Illustrations: 

 (i)  Consider a bullet fired towards a block 
kept on a smooth surface. Collision 
between bullet and the block will be elastic 
if the bullet rebounds with exactly the 
same initial speed and the block remains 
stationory. If the bullet gets embedded into 
the block and the two move jointly, it is 
perfectly inelastic collision. If the bullet 
rebounds with smaller speed or comes 
out of the block on the other side with 
some speed, it is an inelastic (or partially 
inelastic) collision. Remember, there is 
nothing called a partially elastic collision 
Elastic collisions are always perfectly 
elastic. An inelastic collision however, 
may be partially or perfectly inelastic.

 (ii)  Visualise a ball dropped from some height 
on a hard surface, the entire system being 
in an evacuated space. If the ball rebounds 
exactly to the same height from where it 
was dropped, the collision between the 
ball and the surface (in turn, with the 
Earth) is elastic. As you know, the ball 
never reaches the same initial height or 
a height greater than the initial height. 
Rebounding to smaller height refers to 
inelastic collision. Instead of ball, if mud 
or clay is dropped, it sticks to the surface. 
This is perfectly inelastic collision.

4.8.3. Coefficient of Restitution e: 

For collision of two objects, the negative 
of ratio of relative velocity of separation to 
relative velocity of approach is defined as the 
coefficient of restitution e. 

One dimensional or head-on collision: A 
collision is said to be head-on if the colliding 
objects move along the same straight line, 
before and after the collision. Here, we use u

1
, 

u
2
, v

1
, v

2
 as symbols.

Consider such a head-on collision of two 
bodies of masses m

1
 and m

2
 with respective 

initial velocities u
1
 and u

2
. As the collision is 

head on, the colliding masses are along the 
same line before and after the collision. Hence, 
vector treatment is not necessary. (However, 
velocities must be substituted with proper  
signs in actual calculation). Relative velocity 
of approach is then u u ua � �2 1

Let v
1
 and v

2
 be their respective velocities 

after the collision. The relative velocity of 
recede (or separation) is then v = v - vs 2 1

    
---(4.1)

For a perfectly inelastic collision, the 
colliding bodies move jointly after the collision, 
i.e., v = v2 1  or v - v = 02 1 . Hence, for a perfectly 
inelastic collision, e =0. In other words, if e = 
0, the head-on collision is perfectly inelastic 
collision.

Coefficient of restitution during a head-on, 
elastic collision:

Consider the collision described above 
to be elastic. According to the principle of 
conservation of linear momentum, 

Total initial momentum = Total final 
momentum.

   � � � �m u m u m m1 1 2 2 1 1 2 2v v �  --- (4.2) 

   � �� � � �� �m u m u1 1 1 2 2 2v v   --- (4.3)

As the collision is elastic, total kinetic 
energy of the system is also conserved.

   
� � � �

1

2

1

2

1

2

1

21 1
2

2 2
2

1 1
2

2 2
2m u m u m mv v
 
--- (4.4)

   
� �� � � �� �m u m u1 1

2
1
2

2 2
2

2
2v v

 

   

� �� � �� �
� �� � �� �

m u u

m u u

1 1 1 1 1

2 2 2 2 2

v v

v v   --- (4.5)

Dividing Eq. (4.5) by Eq. (4.3), we get
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u u1 1 2 2� � �v v     --- (4.6)
� � � �u u2 1 1 2v v  
For an elastic collision,

e
u u

�
�
�

�
v v1 2

2 1

1
     

--- (4.7)
 

Thus, for an elastic collision, coefficient 
of restitution, e =1. For a perfectly inelastic 
collision, e =0 (by definition). Thus, for any 
collision, the coefficient of restitution lies 
between 1 and 0.

Above expressions (Eq. (4.1) Eq. (4.7)) 
are general. While substituting the values of 
u

1
, u

2
, v

1
, v

2
, their algebraic values must be 

used in actual calculation.

For example referring to the 

Fig. 4.3 (a), (b) and (c)

Eq (4.1) gives

e
ua

� �
vs

Here u
a 
= u

1 
- u

2  
since u

1
> u

2  

and v
s 

= v
1 

+ v
2 

since the objects go in 
opposite directions. 

� � �
�
�

e
u u

v v1 2

1 2          
--- (a)

Using Eq (4.6), 

u
1 
+ v

1 
= u

2 
+ v

2

∴ According to Fig. 4.3,

u
1 
- v

1 
=

 
 u

2 
+ v

2

∴
  
v

1 
+ v

2 
= u

2 
- u

1 
--- (b)

By substituting in (a),

e
u u

u u
� �

�
�

�
( 2 1

1 2

1
)

( )
,

which is the case of a perfectly elastic 
collision.
4.8.4. Expressions for final velocities after a 
          head-on, elastic collision:

From Eq. (4.6), v v2 1 1 2� � �u u

Using this in Eq. (4.2), we get 
m u m u m m u u1 1 2 2 1 1 2 1 1 2� � � � �� �v v

 

� �
�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�v1

1 2

1 2
1

2

1 2
2

2m m

m m
u

m

m m
u

 
--- (4.8)

Subscripts 1 and 2 were arbitrarily chosen. 
Thus, just interchanging 1 with 2 gives us v

2
 as 

v2
2 1

1 2
2

1

1 2
1

2
�

�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�

m m

m m
u

m

m m
u

   
--- (4.9)

Equation (4.9) can also be obtained by 
substituting v

1
 from Eq. (4.8) in Eq. (4.6).

Particular cases: 

(i) If the bodies are of equal masses (or 
identical), m m1 2= , Eqs. (4.8) and (4.9) give

v v1 2 2 1= =u u� � .and  
Thus, the bodies just exchange their 

velocities.
(ii) If colliding body is much heavier and 

the struck body is initially at rest, i.e.,   

  m m u1 2 2 0 � ,and� =

we can use

 
m m m

m

m m1 2 1
2

1 2

0� �
�

�� �and�

� � �v v1 1 2u � �and  2 1u , i.e., the massive 
striking body is practically unaffected and the 
tiny body which is struck, travels with double 
the speed of the massive striking body.

(iii) The body which is struck is much 
heavier than the colliding body and is initially 
at rest, i.e., m m u1 2 2 0 � .and� =

Using similar approximations, we get,
v v1 1 2 0� � �u � �and , i.e., the tiny (lighter) object 
rebounds with same speed while the massive 
object is unaffected. This is as good as dropping 
an elastic object on hard surface of the  Earth .

Do you know ?

Are you aware of elasticity of materials? Is 
there any connection between elasticity of 
materials and elastic collisions?

Example 4.6: One marble collides head-on with 
another identical marble at rest. If the collision 
is partially inelastic, determine the ratio of 
their final velocities in terms of coefficient of 
restitution e.
Solution: According to conservation of 
momentum, m u m u m m1 1 2 2 1 1 2 2� � �v v
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As m m1 2= , we get, u u1 2 1 2� � �v v

� � � �If� we�get �u u2 1 2 10,� , v v ... (I)

Coefficient of restitution, 

e
u u

�
�
�

v v2 1

1 2
  � � �v v2 1 1eu  ... (II)

Dividing Eq. (I) by Eq. (II),

 
v v

v v
1 2

2 1

1�
�

�
e

Using componendo and dividendo, we get, 

v

v
2

1

1

1
�

�
�

e

e
4.8.5. Loss in the kinetic energy during a 

       perfectly inelastic head-on collision:

Consider a perfectly inelastic, head on 
collision of two bodies of masses m

1
 and m

2
 

with respective initial velocities u
1
 and u

2
. As 

the collision is perfectly inelastic, they move 
jointly after the collision, i.e., their final velocity 
is the same. Let it be v.

According to conservation of linear 

momentum, m u m u m m1 1 2 2 1 2� � �� �v

 � �
�
�

v
m u m u

m m
1 1 2 2

1 2
   --- (4.10)

This is the common velocity after a 
perfectly inelastic collision

Loss in K.E. = ∆ (K.E.) 

= Total initial K.E. -  Total final K.E.

� � � � � � �� �

� � � �

� K E. .
1

2

1

2

1

2

1

2

1

2

1

2

1 1
2

2 2
2

1 2
2

1 1
2

2 2
2

1

m u m u m m

m u m u m

v

mm
m u m u

m m2
1 1 2 2

1 2

2

� � �
�

�

�
�

�

�
�

 
� � � � � �

�� �
�� �

� K E. .
1

2

1

2

1

21 1
2

2 2
2 1 1 2 2

2

1 2

m u m u
m u m u

m m
 

On simplifying, we get,

� K E. .� � �
�

�

�
�

�

�
� �� �1

2
1 2

1 2
1 2

2m m

m m
u u

 
--- (4.11)

Masses are always positive and u u1 2

2
�� �  

is also positive. Hence, there is always a loss 
in the kinetic energy in a perfectly inelastic 
collision.

Final velocities and loss in K.E. in an 
inelastic head-on collision: 
If e is the coefficient of restitution, using Eq. 
(4.2), the expressions for final velocities after 
an inelastic collision can be derived as

v1
1 2

1 2
1

2

1 2
2

1
�

�
�

�

�
�

�

�
� �

�� �
�

�

�
��

�

�
��

m em

m m
u

e m

m m
u

 

�
�� � � �

�
em u u m u m u

m m
2 2 1 1 1 2 2

1 2  and

v2
2 1

1 2
2

1

1 2
1

1
�

�
�

�

�
�

�

�
� �

�� �
�

�

�
��

�

�
��

m em

m m
u

e m

m m
u

 

�
�� � � �

�
em u u m u m u

m m
1 1 2 1 1 2 2

1 2

Loss in the kinetic energy is given by

      
� K E. .� � �

�
�

�
�

�

�
� �� � �� �1

2
11 2

1 2
1 2

2 2m m

m m
u u e

. 
As e < 1, (1- e2) is always positive. Thus, there 
is always a loss of K.E. in an inelastic collision. 
Also, for a perfectly inelastic collision, e = 0 . 
Hence, in this case, the loss is maximum.
Using e = 1, these equations lead us to an 
elastic collision and for e = 0  they lead us to 
a perfectly inelastic collision. Verify that they 
give the same expressions that are derived 
earlier.

The quantity � � �
m m

m m
1 2

1 2

 is the reduced mass 
of the system.
Impulse or change in momenta of the 
bodies:
During collision, the linear momentum 
delivered by first body (particle) to the second 
body must be equal to change in momentum 
or impulse of the second body, and vice versa.

∴ Impulse,
J p p

m m u m m u

� �

� � � �

� �1 2

1 1 1 1 2 2 2 2v v
On substituting the values of v

1
 and v

2
  and 

solving, we get

J
m m

m m
e u u

e u

�
�

�

�
�

�

�
� �� � �� �

� �� �

1 2

1 2
1 21

1     � relative

u u u1 2� � �relative velocity�of�approach
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4.8.6. Collision in two dimensions, i.e., a 
           nonhead-on collision: 

In this case, the direction of at least 
one initial velocity is NOT along the line of 
impact. In order to discuss such collisions 
mathematically, it is convenient to use two 
mutually perpendicular directions as shown in 
Fig. 4.4. One of them is the common tangent 
at the point of impact, along which there is 
no force (or along this direction, there is no 
change in momentum). The other direction is 
perpendicular to this common tangent through 
the point of impact, in the two-dimensional 
plane of initial and final velocities. This is 
called the line of impact. Internal mutual forces 
exerted during impact, which are responsible 
for change in the momenta, are acting along 

this line. From Fig. (4.4), u u
 

1 2 and , initial 
velocities make angles α

1
 and α

2 
respectively 

with the line of impact while v  and v
 

1 2 , final 
velocities make angles β

1
 and β

2 
respectively 

with the line of impact.

According to conservation of linear 
momentum along the line of contact,

 
Fig. 4.4: Oblique or non head-on collision. 

m u m u

m m
1 1 1 2 2 2

1 1 1 2 2 2

cos cos

cos cos

� �
� �
�

� �v v   --- (4.12)

As there is no force along the common 
tangent (perpendicular to line of impact),

m u m1 1 1 1 1 1sin sin� �� v    --- (4.13) 
and m u m2 2 2 2 2 2sin sin� �� v   --- (4.14)

For coefficient of restitution, along the line 
of impact,

  
--- (4.15)

Example 4.7: A shell of mass 3 kg is dropped 
from some height. After falling freely for 2 
seconds, it explodes into two fragments of 
masses 2 kg and 1 kg. Kinetic energy provided 
by the explosion is 300 J. Using g = 10 m/s2, 
calculate velocities of the fragments. Justify 
your answer if you have more than one options.

Solution: m m1 2 3� �  kg.

After falling freely for 2 seconds,

v � � � � � � � � ��u at ms u u0 10 2 20 1
1 2� �

According to conservation of linear 
momentum, m u m u m m1 1 2 2 1 1 2 2� � �v v

� � � �3 20 2 11 2v v  � � �v v2 160 2  --- (I)

K.E. provided =  Final K.E. – Initial 

K.E.� � � �� �1

2

1

2

1

21 1
2

2 2
2

1 2
2m m m m uv v

� � � � � �
1

2
2

1

2

1

2
3 20 3001

2
2
2 2

v v �J�
 

or v v2 18001
2

2
2� � �

 

or v v2 60 2 18001
2

1

2
� �� � � � using Eq. (I)

� � � �3600 240 6 18001 1
2v v �   

        � � � �v v1
2

140 300 0  
  and

 
There are two possible answers since the 

positions of two fragments can be different as 
explained below. 

Magnitude of the impulse, along the line of 
impact, 

 

J
m m

m m
e u u

e u

�
�

�

�
�

�

�
� �� � �� �

� �� �

1 2

1 2
1 1 2 21

1

cos cos

relative

� �

�

along line of impact.
Loss in the kinetic energy = ∆ (K.E.) 

1

2
1

1

2
1

1 2

1 2
1 1 2 2

2 2

2

m m

m m
u u e

u

�
�

�
�

�

�
� �� � �� �

� � �

cos cos

relative

� �

� ��� �e2

Equations (4.12), (4.13), (4.14) and (4.15) 
are to be solved for the four unknowns  v

1
, v

2
, 

β
1 
and β

2
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Always remember: 
1) Colliding objects experience forces along 

the line of impact which changes their 
momenta. For their system, these forces are 
internal forces. These forces form an action-
reaction pair, which are equal and opposite, 
and act on different objects.

2) There is no force along the common tangent, 
i.e., perpendicular to the line of contact.

3) In reality, the impact is followed by emission 
of sound and heat and occasionally light. 
Thus, in general, part of mechanical 
energy- kinetic energy - is lost (i.e., 
converted into some other non-recoverable 
forms). However, total energy of the system 
is conserved.

4) In reality, velocity of separation (relative 
final velocity) is less than velocity of 
approach (relative initial velocity) along 
the line of impact. Thus coefficient of 
restitution e < 1. 

5) Only during elastic collisions (atomic and 
molecular level only, never possible in real 
life), the kinetic energy is conserved and the 
velocity of separation is equal to the velocity 
of approach or the initial relative velocity is 
equal to the final relative velocity.

If v
1
 = 30 m s-1 and v

2
 = 0, lighter fragment 

2 should be above.  On the other hand, if v
1
 = 10 

m s-1 and v
2
 = 40 m s-1, lighter fragment 2 should 

be below, both moving downwards.

Example 4.8: Bullets of mass 40 g each, are 
fired from a machine gun at a rate of 5 per 
second towards a firmly fixed hard surface 
of area 10 cm2. Each bullet hits normal to the 
surface at 400 m/s and rebounds in such a way 
that the coefficient of restitution for the collision 
between bullet and the surface is 0.75. Calculate 
average force and average pressure experienced 
by the surface due to this firing.

Solution: For the collision,

u e1
1400 0 75� ��� ,� .m�s  , v1 =�?

For the firmly fixed hard surface, u2 2 0= =v  

 m/s.

-ve sign indicates that the bullet rebounds in 
exactly opposite direction.

 Change in momentum of each bullet  
= m (v

1
-u

1
) 

Equal and opposite will be the momentum 
transferred to the surface, per collision.

∴ Momentum transferred to the surface, 
per collision

p m u� �� � � � �� �� � �1 1 0 04 400 300 28v .  N s

The rate of collision is same as rate of firing.
∴ Momentum received by the surface per 

second, 
dp

dt
� � �28 5 140�N

This must be the average force experienced 
by the surface of area A = 10 cm �m2 3 210� �

∴ Average pressure experienced,

 
≈ 1.4 times the atmospheric pressure.

4.9. Impulse of a force: 
According to Newton’s first law of motion, 

any unbalanced force changes linear momentum 
of the system, i.e., basic effect of an unbalanced 
force is to change the momentum.

According to Newton’s second law of 

motion, F
dp

dt

�� �
=

� �dp F dt
� ��

.  

The quantity ‘change in momentum’ is 
separately named as Impulse of the force 



J .

If the force is constant, and is acting for a 
finite and measurable time, we can write

The change in momentum in time t
� � � � ��
J dp p p F t� � � �2 1 .   ---(4.16)

For a given body of mass m, it becomes

        
� � � � � ��
J p p m v v F t� � � �� � �2 1 2 1 .   ---(4.17)

If F
��

 is not constant but we know how it 
varies with time, then 

� � � ��
J p dp F dt� � �� �� .    --- (4.18)

4.9.1. Necessity of defining impulse: 

As discussed above, if a force is constant 
over a given interval of time or if we know 
how it varies with time, we can calculate the 
corresponding change in momentum directly by 
multiplying the force and time.

However, in many cases, an appreciable 
force acts for an extremely small interval of 



64

time (too small to measure the force and the 
time independently). However, change in the 
momentum due to this force is noticeable and 
can be measured. This change is defined as 
impulse of the force.

Real life illustrations: While (i) hitting a ball 
with a bat, (ii) giving a kick to a foot-ball, (iii) 
hammering a nail, (iv) bouncing a ball from a 
hard surface, etc., appreciable amount of force 
is being exerted. In such cases the time for 
which these forces act on respective objects is 
negligibly small, mostly not easily recordable. 
However, the effect of this force is a recordable 
change in the momentum of that object. Thus, it 
is convenient to define the change in momentum 
itself as a physical quantity.

Fig. 4.5: Graphical representation of impulse 
of a force.

Figure 4.5 shows variation of a force as a 
function of time e.g., for a collision between bat 
and ball with the force axis starting with zero. 
The shaded area or the area under the curve 
gives the product of force against corresponding 
time (in this case, ∆t ), hence gives the impulse. 
For a constant force it is obviously a rectangle. 
Generally, force is zero before the impact, rises 
to a maximum and decreases to zero after the 
impact. For softer tennis ball, the collision 
time is larger and the maximum force is less. 
The area under the (F - t) graph is the same. 
Wicket keeper eases off (by increasing the 
time of collision) while catching a fast ball. As 
mentioned earlier, it is absolutely necessary that 
the force axis must start from zero. 

Recall from Chapter 3, analogues concepts 
using area under a curve are (i) Obtaining 
displacement in a given time interval as area 
under the curve for v-t graph, with zero origin 

for velocity axis. (ii) Obtaining work done by a 
force as the area under the curve for F-s graph, 
with zero origin for force axis.
Example 4.9: Mass of an Oxygen molecule is 
5.35 × 10-26 kg and that of a Nitrogen molecule 
is 4.65 ×10-26 kg. During their Brownian motion 
(random motion) in air, an Oxygen molecule 
travelling with a velocity of 400 m/s collides 
elastically with a nitrogen molecule travelling 
with a velocity of  500 m/s in the exactly opposite 
direction. Calculate the impulse received by 
each of them during collision. Assuming that 
the collision lasts for 1 ms, how much is the 
average force experienced by each molecule?

Let
m m

m m

1
26

2
26

5 35 10

4 65 10

� � �

� � �

�

�

O

N kg

.

. .

�kg�,

� � � �� �u and u1
1

2
1400 500� � � � �m�s m�s  

taking direction of motion of Oxygen 
molecule as the positive direction.

For an elastic collision,

v1
1 2

1 2
1

2

1 2
2

2
�
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�

�
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�

�
� �
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�
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�
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u

m
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u    and

v2
2 1

1 2
2

1

1 2
1

2
�

�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�

m m

m m
u

m

m m
u  

� � � �� �v v1
1

2
1437 463� � � ��� �m�s m�sand  

� � �� � � � �

� �� � � � �

�

�

J m u

J m u

O O

N N

v

v

1 1
23

2 2

4 478 10

4 478 10

� . �

� .

N�s�,�
223 �N�s

 As expected, the net impulse or net change 
in momentum is zero.

F
dp

dt

J

tON
O O

 N

� � �
� �

� � �

�

�

�

�
� .

� .

4 478 10

10

4 478 10

23

3

20

and F FNO ON� � � � �� .4 478 10 20  N

4.10.  Rotational analogue of a force -          
moment of a force or torque: 
While opening a door fixed to a frame 

on hinges, we apply the force away from the 
hinges and perpendicular to the door to open 
it with ease. In this case we are interested in 
achieving some angular displacement for the 
door. If the force is applied near the hinges or 
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nearly parallel to the door, it is very difficult to 
open the door. Similarly, if the door is heavier 
(made up of iron instead of wood or plastic), we 
need to apply proportionally larger force for the 
same angular displacement. 

It shows that rotational ability of a force 
not only depends upon the mass (greater force 
for greater mass), but also upon the point of 
application of the force (the point should be as 
away as possible from the axis of rotation) and 
the angle between direction of the force and the 
line joining the axis of rotation with the point 
of application (effect is maximum, if this angle 
is 900).  

Taking into account all these factors, the 
quantity moment of a force or torque is defined 
as the rotational analogue of a force. As rotation 
refers to direction (sense of rotation), torque 
must be a vector quantity. In its mathematical 
form, torque or moment of a force is given by 

� � ��� � �r F      --- (4.17)

where F
��

 is the applied force and 


r  is the 
position vector of the point of application of the 
force from the axis of rotation, as shown in the 
Figs. 4.6 (b) and 4.6 (c).

 

Figs. 4.6(a): Illustration 
of moment of force 
with object and axis of 
rotation in 3D view.

Figs. 4.6(b): Top view 
for moment of force F

��
  

in anticlockwise rotation 
with F

��
 and 



r  in the 
plane of paper.

Figs. 4.6(c): Top view 
of moment of force F

��
 

in clockwise rotation F
��

 
and 



r  in the plane of 
paper.

Figures 4.6(a), 4.6(b) and 4.6(c) illustrate 

the directions involved. Figure 4.6(a) is a 3D 
drawing indicating the laminar (plane or two 
dimensional) object rotating about a (fixed) axis 
of rotation AOB, the axis being perpendicular to 
the object and passing through it. Figure 4.6(b) 
indicates the top view of the object when the 
rotation is in anticlockwise direction and Fig. 
4.6(c) shows the view from the top, if rotation is 
in clockwise direction. (In fact, Figs. 4.6(b) and 
4.6(c) are drawn in such a way that the applied 
force F

��
 and position vector 



r  of the point 
of application of the force are in the plane of 
these figures). Direction of the torque is always 
perpendicular to the plane containing the vectors 


r  and F
��

 and can be obtained from the rule of 
cross product or by using the right-hand thumb 
rule. In Fig. 4.6(b), it is perpendicular to the 
plane of the figure (in this case, perpendicular 
to the body) and outwards, i.e., coming out of 
the paper while in the Fig. 4.6(c), it is inwards, 
i.e., going into the paper.  

In order to indicate the directions which 
are not in the plane of figure, we use a special 
convention:  for perpendicular to the plane of 
figure and outwards and ⊗ for perpendicular to 
the plane of figure and inwards. 

   

 (a)        (b)

  

      (c)        (d)

Fig. 4.7: Convention of pictorial 
representation of vectors as shown in (a) 
acting in a direction perpendicular to the 
plane of paper (b) coming out of paper, (c) 
going in to the paper and (d) perpendicular 
to the plane of paper.    

This convention depends upon a traditional 
arrow shown in Fig. 4.7 (a). Consider yourself, 
looking towards the figure from the top. If this 
arrow approaches you, the tip of the arrow 
will be prominently seen. Hence circle with a 
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dot in it [Fig. 4.7 (b)] refers to perpendicular 
and outwards (or towards you). When you 
are leaving an arrow, i.e., if an arrow is going 
away from you, the feathers like a cross will be 
seen. Hence, a circle with a cross [Fig. 4.6 (c)] 
indicates perpendicular and inwards (or away 
from you). Circle with cross and dot indicates 
a line perpendicular to the plane of figure [Fig. 
4.6 (d)].

Magnitude of torque, τ = r F sin θ  --- (4.18)

where θ  is the smaller angle between the 
directions of r F

� ��
� and .

Consequences: (i) If r or F is greater, the 
torque (hence the rotational effect) is greater. 
Thus, it is recommended to apply the force 
away from the hinges.

(ii) If � � 900 , � �� �max rF . Thus, the 
force should be applied along normal direction 
for easy rotation.

(iii) If θ = 0° or 180°, � �� �min 0.  Thus, if 
the force is applied parallel or anti-parallel to 



r
, there is no rotation.

(iv) Moment of a force depends not only on 
the magnitude and direction of the force, but also 
on the point where the force acts with respect 
to the axis of rotation. Same force can have 
different torque as per its point of application.
4.11. Couple and its torque: 

In the discussion of the torque given above, 
we had considered rotation of the body about a 
fixed axis and due to a single force. In real life, 
quite often we apply two equal and opposite 
forces acting along different lines of action in 
order to cause rotation. Common illustrations 
are turning a bicycle handle, turning the steering 
wheel, opening a common water tap, opening 
the lid of a bottle (rotation type), etc. Such a 
pair of forces consisting of two forces of equal 
magnitude acting in opposite directions along 
different lines of action is called a couple. It 
is used to realise a purely rotational motion. 
Moment of a couple or rotational effect of a 
couple is also called a torque. 

It may be noted that in the discussion of 
rotation of a body about a fixed axis due to 
a single force, there is a reaction force at the 
fixed axis. Hence, for rotation one always needs 

two forces acting in opposite direction along 
different lines of action.   

Torque or Moment of a couple: Figure 4.8 
shows a couple consisting of two forces 



F and1 �  


F2  of equal magnitudes and opposite directions 
acting along different lines of action separated 
by a distance r. Corresponding position vectors 
should now be defined with reference to the 
lines of action of forces. Position vector of any 
point on the line of action of force 



F1  from the 

line of action of force 


F2  is 


r12.  Similarly, the 
position vector of any point on the line of action 

of force 


F2  from the line of action of force 


F1  

is  


r21.  Torque or moment of the couple is then 
given mathematically as 

Fig. 4.8: Torque of a couple.
 







� � � � �r F r F12 1 21 2
   --- (4.19)

From the figure, it is clear that 
r r r12 21  sin sin� �� �

If 
 

F F F1 2= = ,  the magnitude of torque 
is given by

 τ = r
12

 F
1
 sin α = r

21
 F

2
 sin β = r F  --- (4.20)

It clearly shows that the torque 
corresponding to a given couple, i.e., the 
moment of a given couple is constant, i.e., it 
is independent of the points of application of 
forces or the position of the axis of rotation, 
but depends only upon magnitude of either 
force and the separation between their lines of 
action. 

The direction of moment of couple can 
be obtained by using the vector formula of 
the torque or by using the right-hand thumb 
rule. For the couple shown in the Fig. 4.8, it 
is perpendicular to the plane of the figure and 
inwards. For a given pair of forces, the direction 
of the torque is fixed.
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4.11.1. To prove that the moment of a couple 
              is independent of the axis of rotation: 

Figure 4.9 shows a rectangular sheet (any 
object would do) free to rotate only about a fixed 
axis of rotation, perpendicular to the plane of 
figure, as shown. A couple consisting of forces 
F
��

 and - F
��

 is acting on the sheet at different 
locations. 

Here we are considering the torque of a 
couple to be two torques due to individual forces 
causing rotation about the axis of rotation. In 
Fig. 4.9(a), the axis of rotation is between the 
lines of action of the two forces constituting the 
couple. Perpendicular distances of the axis of 
rotation from the forces F

��
 and - F

��
 are x and y 

respectively. Rotation due to the pair of forces 
in this case is anticlockwise (from top view), 
i.e., directions of individual torques due to the 
two forces are the same.

� � � � � � �� � �� �� � � xF yF x y F rF  (4.21)

   (a)

  (b)
Fig. 4.9: Same couple on same object with 
fixed axis of rotation at different locations 
in (a) and (b).

In the Fig. 4.9 (b), lines of action of both 
the forces are on the same side of the axis of 
rotation. Thus, in this case, the rotation of + F

��
 

is anticlockwise, while that of - F
��

 is clockwise 
(from the top view). As a result, their individual 
torques are oppositely directed. Perpendicular 
distance of the forces F and -F from the axis of 
rotation are q and p respectively.

� � � � �

� �� � �
� �� � � qF pF

q p F rF   --- (4.22)

From equations (4.21) and (4.22), it is clear 
that the torque of a couple is independent of the 
axis of rotation.

4.12. Mechanical equilibrium: 

As a consequence of Newton’s second law, 
the momentum of a system is constant in the 
absence of an external unbalanced force. This 
state is called mechanical equilibrium.

A particle is said to be in mechanical 
equilibrium, if no net force is acting upon it. 
For a system of bodies to be in mechanical 
equilibrium, the net force acting on any part 
of the system should be zero. In other words, 
velocity or linear momentum of all parts of the 
system must be constant or (zero) for the system 
to be in mechanical equilibrium. Also, there is 
no acceleration in any part of the system.

Mathematically, � �F
��

0 , for any part of 
the system for mechanical equilibrium.

In many situations the word couple is 
used synonymous to moment of the couple or 
its torque, i.e., every time we may not say it as 

torque due to the couple, but say that a couple 
is acting.

Moment of a force Moment of a couple

1
 



� � �r f  
 







� � � � �r F r F12 1 21 2  

2
τ  depends upon the axis of rotation and 
the point of application of the force.

τ  depends only upon the two forces, i.e., it 
is independent of the axis of rotation or the 
points of application of forces.

3
It can produce translational acceleration 
also, if the axis of rotation is not fixed or if 
friction is not enough.

Does not produce any translational 
acceleration, but produces only rotational or 
angular acceleration.

4
Its rotational effect can be balanced by a 
proper single force or by a proper couple.

Its rotational effect can be balanced only by 
another couple of equal and opposite torque.



68

4.12.1 Stable, unstable and neutral             
           equilibrium: 

Figures 4.10 (a), (b) and (c) show a ball 
at rest in three situations under the action of 
balanced forces. In all these cases, it is under 
equilibrium. However, potential energy-wise, 
the three cases differ.

(a)

(b)

(c) ’
Fig. 4.10: states of mechanical equilibrium 
(a) stable, (b) unstable and (c) neutral. 

Stable equilibrium: In Fig. 4.9(a), the 
ball is most stable and is said to be in stable 
equilibrium. If it is disturbed slightly from 
its equilibrium position and released, it tends 
to recover its position. In this case, potential 
energy of the system is at its local minimum.
Unstable equilibrium: In Fig. 4.9(b), the ball 
is said to be in unstable equilibrium. If it is 
slightly disturbed from its equilibrium position, 
it moves farther from that position. This happens 
because initially, potential energy of the system 
is at its local maximum. If disturbed, it tries to 
achieve the configuration of minimum potential 
energy.

Neutral equilibrium: In Fig. 4.9(c), potential 
energy of the system is constant over a plane and 
remains same at any position. Thus, even if the 
ball is disturbed, it still remains in equilibrium 
at practically any position. This is described as 
neutral equilibrium.

Example 4.10: A uniform wooden plank of 
mass 30 kg is supported symmetrically by two 
light identical cables; each can sustain a tension 
up to 500 N. After tying, the cables are exactly 
vertical and are separated by 2 m. A boy of mass 
50 kg, standing at the centre of the plank, is 
interested in walking on the plank. How far can 
he walk? (g = 10 ms-2)

Solution: Let T
1
 and T

2
 be the tensions along 

the cables, both acting vertically upwards. 

Weight of the plank 300 N is acting 
vertically downwards through the centre, 1 m 
from either cable. Weight of the boy, 500 N is 
vertically downwards at the point where he is 
standing. 

� � � � ��T T1 2 300 500 800  N
Suppose that the boy is able to walk x m 

towards the right. Obviously, the tension in the 
right side cable goes on increasing as he walks 
towards the cable. 

Moments of 300 N and 500 N forces about 
left end A are clockwise, while that of T

2
 is 

anticlockwise.

As the cable can sustain 500 N, (T
2
)

max
 = 

500 N

Thus, for the equilibrium about A, we can 
write,

300 1 500 1 500 2 0 4� � � �� � � � � �x x��� . �m

Thus, the boy can walk up to 40 cm on 
either side of the centre.
Example 4.11: A ladder of negligible mass 
having a cross bar is resting on a frictionless 
horizontal floor with angle between its legs  
to be 400. Each leg is 1 m long. Calculate the 

If potential energy function is known for the 
system, mathematically, the three equilibria 
can be explained with the help of derivatives 
of that function. At any equilibrium position, 
the first derivative of the potential energy 

function is zero 
dU

dx
��

�
�

�
�
�0 . 

The sign of the second derivative
d U

dx

2

2

�

�
�

�

�
�   

decides the type of equilibrium. It is positive  

at stable equilibrium (or vice versa), negative 
at unstable equilibrium and zero (or does not 
exist) at neutral equilibrium configuration.

(a)



force experienced by the cross bar when a 
person of mass 50 kg is standing on the ladder. 
(g = 10 m s-2)
Solution: Tension T along the cross bar is 
horizontal. Let L be the length of each leg, 
which is 1 m.

As there is no friction, there is no horizontal 
reaction at the floor. Reaction N given by the 
floor at the base of the ladder will then be only 
vertical. Thus, along the vertical, two such 
reactions balance weight W = mg of the person. 

� � �N
mg

2
 250 N

At the left leg, about the upper end, the 
torque due to N is clockwise and that due to 
the tension T is anticlockwise. For equilibrium, 
these two torques should have same magnitude.

4.13. Centre of mass: 
As discussed earlier, Newton’s laws of 

motion and many other laws are applicable for 
point masses only. However, in real life, we 
always come across finite objects (objects of 
measurable sizes). Concept of centre of mass 
(c.m.) helps us in considering these objects to 
be point objects at a particular location, thereby 
allowing us to apply Newton’s laws of motion.

4.13.1. Mathematical understanding of 
             centre of mass:

(i) System of n particles: Consider a system 
of n particles of masses m

1
, m

2
 ... m

n
. 

  
�

1

n

im��  =  M the total mass.  

Let   be their respective position 
vectors from a given origin O (Fig. 4.11) . 

Fig. 4.11: Centre of mass for n particles. 

Position vector 


r  of their centre of mass 
from the same origin is then given by



 

r
m r

m

m r

M

n

i i

n

i

n

i i� ��
�

�1

1

1

 
If the origin itself is at the centre of mass,

 
 

r m r
n

i i� � ��0 0
1

  � , then

1

n

i im r∑ 

 gives the moment of masses 
  
(similar to moment of force) about the centre 
of mass. 

Thus, centre of mass is a point about which 
the summation of moments of masses in the 
system is zero.

If   x
1
,  x

2
,  ... x

n
    are the respective x- 

coordinates of  r
1
,
 
r

2
, ... r

n
, the x-coordinate of 

the centre of mass is given by

 x
m x

m

m x

M

n

i i

n

i

n

i i� ��
�

�1

1

1

Similarly, y and z-coordinates of the centre 
of mass are respectively given by 

 

and

 

y
m y

m

m y

M

z
m z

m

m z

M

n

i i

n

i

n

i i

n

i i

n

i

n

i i

� �

� �

�
�

�

�
�

�

1

1

1

1

1

1

��

 
(i) Continuous mass distribution: For a 

continuous mass distribution with uniform 
density, we need to use integration instead of 
summation. In this case, the position vector of 
the centre of mass is given by



 

r
r dm

dm

r dm

M
� ��
�

�  
,
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where  � �dm M  is the total mass of the object. 
Then the Cartesian coordinates of c.m. are   

 

x
x dm

dm

x dm

M
� ��
�

�  

y
y dm

dm

y dm

M
� ��
�

�  

z
z dm

dm

z dm

M
� ��
�

�  

 

Using the expressions given above, the 
centres of mass of uniform symmetric objects 
can be obtained. Some of these are listed in the 
Table 4.1 given below:

Table 4.1: Coordinate of the centre of mass 
(c.m.) for some symmetrical objects

Coordinates of 
c.m.

Uniform Symmetric 
Objects

System of two point 
masses: c.m. divides 
the distance in in-
verse proportion of 
the masses
Any geometrically 
symmetric object of 
uniform density.

Centre of mass at a 
geometrical centre of 
the  object

Isosceles triangular 
plate

x y
H

c c= =0
3

, 
  

Right angled 
triangular plate

 
x

p
y

q
c c= =

3 3
,  

 
Thin semicircular
ring of radius R

x y
R

c c� �0
2

,  
�

Thin semicircular
 disc of radius R

x y
R

c c� �0
4

3
,  

�

Hemispherical shell
 of radius R

x y
R

c c= =0
2

,  

Solid hemisphere of 
radius R

x y
R

c c= =0
3

8
,  

Hollow right circu-
lar cone of height h

x y
h

c c= =0
3

,  

Solid right circular 
cone of height h

x y
h

c c= =0
4

,  

Example 4.12: A letter ‘E’ is prepared from a 
uniform cardboard with shape and dimensions 
as shown in the figure. Locate its centre of mass.

Solution: As the sheet is uniform, each square 
can be taken to be equivalent to mass m 
concentrated at its  respective centre. These 
masses will then be at the points labelled with 
numbers 1 to 10, as shown in figure. Let us 
select the origin to be at the left central mass m

5
, 

as shown and all the co-ordinates to be in cm.

By symmetry, the centre of mass of m
1
, m

2
 

and m
3
 will be at m

2 
(1, 2) having effective mass 

3m. Similarly, effective mass 3m due to m
8
, m

9
 

and m
10

 will be at m
9 
(1, -2). Again, by symmetry, 

the centre of mass of these two (3m each) will 
have co-ordinates (1, 0). Mass m

6
 is also having 

co-ordinates (1, 0). Thus, the effective mass at 
(1, 0) is 7m.

Using symmetry for m
4
, m

5
 and m

7
, there 

will be effective mass 3m at the origin (0, 0). 
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Thus, effectively, 3m and 7m are separated 
by 1 cm along x-direction. y-coordinate is not 
required.

x
m x m x

m mc �
�
�

�
� � �

�
�1 1 2 2

1 2

3 0 7 1

3 7
0 7. �cm

 
Alternately, for two point masses, the centre 

of mass divides the distance between them in 
the inverse ratio of their masses. Hence, 1 cm is 

divided in the ratio 7:3.  
from 3m, i.e., from the origin at m

c

Example 4.13: Three thin walled uniform 
hollow spheres of radii 1cm, 2 cm and 3 cm 
are so located that their centres are on the three 
vertices of an equilateral triangle ABC having 
each side 10 cm. Determine centre of mass of 
the system.

Solution: Mass of a thin walled uniform hollow 
sphere is proportional to its surface area, (as 
density is constant) hence proportional to r2. 
Thus, if mass of the sphere at A is m

A
 =  m, then 

m
B
 =  4m and m

C
 =  9m. By symmetry of the 

spherical surface, their centres of mass are at 
their respective centres, i.e., at A, B and C.

Let us choose the origin to be at C, where 
the largest mass 9m is located and the point B 
with mass 4m on the positive x-axis. With this, 
the co-ordinates of C are (0, 0) and that of B 
are (10, 0). (Locating the origin at the larger 
mass here save our efforts of calculations like 
multiplications with larger numbers). If A of 
mass m is taken in the first quadrant, its co-

ordinates will be 

x
m x m x m x

m m m

m m m

m m m

c
A A B B C C

A B C

�
� �
� �

�
� � � � �

� �
�     

5 4 10 9 0

4 9

45

14
�ccm

y
m y m y m y

m m m

m m m

m m m

c
A A B B C C

A B C

�
� �
� �

�
� � � � �

� �
�     

10 3
2

4 0 9 0

4 9

10� 33

28
�cm

Example 4.14: A hole of radius r is cut from a 
uniform disc of radius 2r. Centre of the hole is 
at a distance r from centre of the disc. Locate 
centre of mass of the remaining part of the disc.

Solution: Method I: (Using entire disc):  
Before cutting the hole, c.m. of the full disc was 
at its centre. Let this be our origin O. Centre of 
mass of the cut portion is at its centre D. Thus, 
it is at a distance x1 =�r form the origin. Let C 
be the centre of mass of the remaining disc. 
Obviously, it should be on the extension of the 
line DO. Let it be at a distance x x2 =  from the 
origin. As the disc is uniform, mass of any of its 
part is proportional to the area of that part.

Thus, if m is the mass of the cut disc, mass 
of the entire disc must be 4m and mass of the 
remaining disc will be 3m.

x
m x m x

m mc �
�
�

1 1 2 2

1 2   As centre of mass of the 
full disc is at the origin, we can write,

 
0

3

3 3
�

� � �� �
�

� �
�m r m x

m m
x

r
����

�

Method II: (Using negative mass): Let 


R  be the position vector of the centre of mass 
of the uniform disc of mass M. Mass m is with 
centre of mass at position vector 



r  from the 
centre of the disc. Position vector of the centre 
of mass of the remaining disc is then given by
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r
MR mr

M mc �
�
�  ….. (as if there is a negative 

mass, i.e., m
2
 = - m)

With our description, M = 4m,  m =m,   

R  =  0  and  r  = r �
� �

�� �
�

�
�

r
mr

m

r
c 3 3

  ... Same 
as method I.

4.13.2. Velocity of centre of mass: 

Let v
1
, v

2
, ... v

n
 be the velocities of a system 

of point masses m
1
, m

2
, ... m

n
. Velocity of the 

centre of mass of the system is given by

 
x, y and z components of 



v  can be obtained 
similarly.

For continuous distribution, 


v
v 

cm � � dm

M
4.13.3. Acceleration of the centre of mass: 

Let a
1
, a

2
, ... a

n
 be the accelerations 

of a system of point masses m
1
, m

2
, ... m

n
. 

Acceleration of the centre of mass of the system 
is given by

 x, y and z components of 


a  can be obtained 
similarly.

For continuous distribution, 




a
a dm

Mcm �
�  

4.13.4. Characteristics of centre of mass:

 1.  Centre of mass is a hypothetical point 
at which entire mass of the body can be 
assumed to be concentrated. 

 2.  Centre of mass is a location, and not a 
physical quantity. 

 3.  Centre of mass is particle equivalent of a 
given object for applying laws of motion.

 4.  Centre of mass is the point at which, if 
a force is applied, it causes only linear 
acceleration and not angular acceleration.

 5.  Centre of mass is located at the centroid, 
for a rigid body of uniform density.

 6.  Centre of mass is located at the geometrical 
centre, for a symmetric rigid body of 
uniform density.

 7. Location of centre of mass can be changed 
only by an external unbalanced force.

 8. Internal forces (like during collision or 
explosion) never change the location of 
centre of mass.

 9.  Position of the centre of mass depends 
only upon the distribution of mass, 
however, to describe its location we may 
use a coordinate system with a suitable 
origin. In statistical terms the centre of 
mass is decided by the weighted average 
of individual masses. This is obtained 
by giving proper mass weightage to the 
distance. This should be clear from the 
mathematical expression for the location 
of the centre of mass.

 10. For a system of particles, the centre of 
mass need not coincide with any of the 
particles.

 11.  While balancing an object on a pivot, the 
line of action of weight must pass through 
the centre of mass and the pivot. Quite 
often, this is an unstable equilibrium.

 12. Centre of mass of a system of only two 
particles divides the distance between 
the particles in an inverse ratio of their 
masses, i.e., it is closer to the heavier 
mass.

 13. Centre of mass is a point about which the 
summation of moments of masses in the 
system is zero.

 14.  If there is an axial symmetry for a given 
object, the centre of mass lies on the axis 
of symmetry.

 15.  If there are multiple axes of symmetry 
for a given object, the centre of mass is at 
their point of intersection.

 16.  Centre of mass need not be within the 
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body (See the photograph given below: 
Picture 4.1). Other examples are a ring, a 
horse shoe, etc.

Picture 4.1: Courtesy Wikipedia: Estimated 

center of mass/gravity of a high jumper doing 

a Fosbury Flop. Note that it is below the bar in 

this position. This is possible because our head 

and legs are much heavier than the fleshy part. 

Increase in the gravitational potential energy of 

the high jumper depends upon this point.

4.14. Centre of gravity 

Centre of gravity (c.g.) of a body is the 
point around which the resultant torque due to 
force of gravity on the body is zero. Analogous 
to centre of mass, it is the weighted average of 
the gravitational forces (weights) on individual 
particles.

For uniform gravitational field (in simple 
words, if g is constant), c.g. always coincides 
with the c.m. Obviously it is true for all the 
objects on the  Earth  in our daily life. Thus, 
in common usage, the terms c.g. and c.m. are 

used for same purpose. This property can be 
used to determine the c.g. (or c.m.) of a laminar 
(laminar means like a leaf – two dimensional) 
object.

In Fig. 4.12, a laminar object is suspended 
from a rigid support at two orientations. Lines 
are to be drawn on the object parallel to the 
plumb line shown. Plumb line is always vertical, 
i.e., parallel to the line of action of gravitational 
force. Intersection of the lines drawn is then 
the point through which line of action of the 
gravitational force passes for any orientation. 
Thus, it gives the location of the c.g. or c.m. 

    

Centre of mass is a fixed property for a 
given rigid body in spite of any orientation. 
The centre of gravity may depend upon non-
uniformity of the gravitational field, in turn, 
will depend upon the orientation. For objects on 
the  Earth , this will be possible only if the size 
of an object is comparable to that of the  Earth  
(size at least few thousand km). In such cases, 
the c.g. will be slightly lower than the c.m. as on 
the lower side of an object the gravitational field 
is stronger. Of course, we shall not come across 
such an object.

Exercises Exercises

1. Choose the correct answer.
 i) Consider following pair of forces of equal 

magnitude and opposite directions:
  (P) Gravitational forces exerted on each 

other by two point masses separated 
by a distance.

  (Q) Couple of forces used to rotate a water 
tap.

  (R) Gravitational force and normal force 
experienced by an object kept on a 
table.

  For which of these pair/pairs the two forces 

do NOT cancel each other’s translational 
effect?

  (A) Only P (B) Only P and Q 
(C) Only R (D) Only Q and R

 ii) Consider following forces: (w) Force due 
to tension along a string, (x) Normal force 
given by a surface,  (y) Force due to air 
resistance and (z) Buoyant force or upthrust 
given by a fluid.

  Which of these are electromagnetic forces?
  (A) Only w, y and z 
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  (A) Centre of mass of a ‘C’ shaped uniform 
rod can never be a point on that rod.

  (B) If the line of action of a force passes 
through the centre of mass, the moment 
of that force is zero.

  (C) Centre of mass of our Earth is not at its 
geometrical centre.

  (D) While balancing an object on a pivot, 
the line of action of the gravitational 
force of the earth passes through the 
centre of mass of the object.

viii. For which of the following objects will the 
centre of mass NOT be at their geometrical 
centre?

  (I)    An egg  
  (II)   a cylindrical box full of rice 
  (III) a cubical box containing assorted 
                sweets
    (A) Only (I)
    (B) Only (I) and (II)
    (C) Only (III)
    (D) All, (I), (II) and (III).

2. Answer the following questions. 

 i)  In the following table, every entry on the 
left column can match with any number of 
entries on the right side. Pick up all those 
and write respectively against A, B, C and 
D.

Name of the force Type of the force

A Force due to 
tension in a string

P EM force

B Normal force Q Reaction force

C Frictional force R Conservative 
force

D Resistive force 
offered by air or 
water for objects 
moving through it.

S Non-
conservative
force

 ii)   In real life objects, never travel with 
uniform velocity, even on a horizontal 
surface, unless something is done? Why 
is it so? What is to be done?

 iii)  For the study of any kind of motion, we 
never use Newton’s first law of motion 
directly. Why should it be studied?

 iv)   Are there any situations in which we 
cannot apply Newton’s laws of motion? 
Is there any alternative for it?

  (B) Only w, x and y 
  (C) Only x, y and z 
  (D) All four.
iii)  At a given instant three point masses m, 

2m and 3m are equidistant from each other. 
Consider only the gravitational forces 
between them. Select correct statement/s 
for this instance only:

  (A) Mass m experiences maximum force.
  (B) Mass 2m experiences maximum force.
  (C) Mass 3m experiences maximum force.
  (D) All masses experience force of same 
              magnitude.
 iv) The rough surface of a horizontal table 

offers a definite maximum opposing force 
to initiate the motion of a block along the 
table, which is proportional to the resultant 
normal force given by the table. Forces  
F

1
 and F

2
 act at the same angle θ with the 

horizontal and both are just initiating the 
sliding motion of the block along the table. 
Force F

1
 is a pulling force while the force 

F
2 
is a pushing force.  F

2
 > F

1 
, because

  (A) Component of F
2
 adds up to weight to 

        increase the normal reaction.
  (B) Component of F

1 
 adds up to weight to 

               increase the normal reaction.
  (C) Component of F

2
 adds up to the               

opposing force.
  (D) Component of F

1
 adds up to the               

opposing force.
 v.  A mass 2m moving with some speed is 

directly approaching another mass m 
moving with double speed. After some 
time, they collide with coefficient of 
restitution 0.5. Ratio of their respective 
speeds after collision is

  (A) 2/3  (B) 3/2  
  (C) 2  (D) ½
 vi.  A uniform rod of mass 2m is held horizontal 

by two sturdy, practically inextensible 
vertical strings tied at its ends. A boy of 
mass 3m hangs himself at one third length 
of the rod. Ratio of the tension in the string 
close to the boy to that in the other string is

  (A) 2  (B) 1.5  
  (C) 4/3  (D) 5/3
 vii. Select WRONG statement about centre of 

mass:
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 v)  You are inside a closed capsule from where 
you are not able to see anything about 
the outside world. Suddenly you feel 
that you are pushed towards your right. 
Can you explain the possible cause (s)? 
Is it a feeling or a reality? Give at least 
one more situation like this.

 vi)  Among the four fundamental forces, 
only one force governs your daily life 
almost entirely. Justify the statement by 
stating that force.

 vii)  Find the odd man out: (i) Force 
responsible for a string to become taut 
on stretching (ii) Weight of an object (iii) 
The force due to which we can hold an 
object in hand. 

 viii) You are sitting next to your friend on 
ground. Is there any gravitational force 
of attraction between you two? If so, why 
are you not coming together naturally? 
Is any force other than the gravitational 
force of the earth coming in picture?

 ix)  Distinguish between: (A) Real and 
pseudo forces, (B) Conservative and 
non-conservative forces, (C) Contact 
and non-contact forces, (C) Inertial and 
non-inertial frames of reference.

 x)  State the formula for calculating work 
done by a force. Are there any conditions 
or limitations in using it directly? If 
so, state those clearly. Is there any 
mathematical way out for it? Explain.

 xi)  Justify the statement, “Work and energy 
are the two sides of a coin”.

 xii)  From the terrace of a building of height 
H, you dropped a ball of mass m. It 
reached the ground with speed v. Is 

the relation �mgH m=
1

2
2v  applicable 

exactly? If not, how can you account 
for the difference? Will the ball bounce 
to the same height from where it was 
dropped?

 xiii) State the law of conservation of linear 
momentum. It is a consequence of which 
law? Given an example from our daily 
life for conservation of momentum. Does 
it hold good during burst of a cracker?

 xiv) Define coefficient of restitution and 

obtain its value for an elastic collision 
and a perfectly inelastic collision.

 xv)  Discuss the following as special cases of 
elastic collisions and obtain their exact 
or approximate final velocities in terms 
of their initial velocities.

      (i)  Colliding bodies are identical.
     (ii)  A veru heavy object collides on a               
                 lighter object, initially at rest.
   (iii) A very light object collides on a 

comparatively much massive object, 
initially at rest.

 xvi) A bullet of mass m
1
 travelling with a 

velocity u strikes a stationary wooden 
block of mass m

2
 and gets embedded into 

it. Determine the expression for loss in 
the kinetic energy of the system. Is this 
violating the principle of conservation of 
energy? If not, how can you account for 
this loss?

 xvii) One of the effects of a force is to change 
the momentum. Define the quantity 
related to this and explain it for a variable 
force. Usually when do we define it 
instead of using the force?

 xviii) While rotating an object or while 
opening a door or a water tap we apply a 
force or forces. Under which conditions 
is this process easy for us? Why? Define 
the vector quantity concerned. How does 
it differ for a single force and for two 
opposite forces with different lines of 
action? 

 xix) Why is the moment of a couple 
independent of the axis of rotation even 
if the axis is fixed?

 xx)  Explain balancing or mechanical 
equilibrium. Linear velocity of a rotating 
fan as a whole is generally zero. Is it in 
mechanical equilibrium? Justify your 
answer.

 xxi) Why do we need to know the centre of 
mass of an object? For which objects, 
its position may differ from that of the 
centre of gravity?

Use g = 10 m s -2, unless, otherwise stated.

3. Solve the following problems.
 i) A truck of mass 5 ton is travelling on a 
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horizontal road with 36 km hr -1 stops 
on traveling 1 km after its engine fails 
suddenly. What fraction of its weight is the 
frictional force exerted by the road? 

  If we assume that the story repeats for a 
car of mass 1 ton i.e., can moving with 
same speed stops in similar distance same  
how much will the fraction be? 

     [Ans: 
1

200
in the both]

 ii) A lighter object A and a heavier object B 
are initially at rest. Both are imparted the 
same linear momentum. Which will start 
with greater kinetic energy: A or B or both 
will start with the same energy?

      [Ans: A]
 iii) As I was standing on a weighing machine 

inside a lift it recorded 50 kg wt. Suddenly 
for few seconds it recorded 45 kg wt. What 
must have happened during that time? 
Explain with complete numerical analysis. 
[Ans: Lift must be coming down with 

acceleration 
g

m s
10

1 2� � ]

 iv) Figure below shows a block of mass 35 kg 
resting on a table. The table is so rough that 
it offers a self adjusting resistive force 10% 
of the weight of the block for its sliding 
motion along the table. A 20 kg wt load is 
attached to the block and is passed over a 
pulley to hang freely on the left side. On the 
right side there is a 2 kg wt pan attached to 
the block and hung freely. Weights of 1 kg 
wt each, can be added to the pan. Minimum 
how many and maximum how many such 
weights can be added into the pan so that 
the block does not slide along the table? 

    [Ans: Min 15, maximum 21].

           

35 kg wt
on rough table

20kg wt
load

2kg wt
pan

 v) Power is rate of doing work or the rate at 
which energy is supplied to the system. 
A constant force F is applied to a body 
of mass m. Power delivered by the force 
at time t from the start is proportional to 

  (a) t   (b) t2   

(c)  t    (d) t0 
  Derive the expression for power in terms 

of F, m and t.      

   [Ans: p
F t

m
p t� �

2

, �  ]

 vi) 40000 litre of oil of density 0.9 g cc is 
pumped from an oil tanker ship into a 
storage tank at 10 m higher level than the 
ship in half an hour. What should be the 
power of the pump? 

      [Ans: 2 kW]
 vii) Ten identical masses (m each) are 

connected one below the other with 
10 strings. Holding the topmost string, 
the system is accelerated upwards with 
acceleration g/2. What is the tension 
in the 6th string from the top (Topmost 
string being the first string)?

      [Ans: 6 mg]
 viii) Two galaxies of masses 9 billion solar 

mass and 4 billion solar mass are 5 
million light years apart. If, the Sun has 
to cross the line joining them, without 
being attracted by either of them, through 
what point it should pass? 

  [Ans: 3 million light years from the 9 
billion solar mass]

 ix) While decreasing linearly from 5 N to 3 
N, a force displaces an object from 3 m 
to 5 m. Calculate the work done by this 
force during this displacement. 

      [Ans: 8 N]
 x) Variation of a force in a certain region 

is given by F = 6x2 - 4x - 8. It displaces 
an object from x = 1 m to x = 2 m in this 
region. Calculate the amount of work 
done. [Ans: Zero]

 xi) A ball of mass 100 g dropped on the 
ground from 5 m bounces repeatedly. 
During every bounce 64% of the 
potential energy is converted into kinetic 
energy. Calculate the following:

  (a) Coefficient of restitution.
  (b) Speed with which the ball comes up 

from the ground after third bounce.
  (c) Impulse given by the ball to the 

ground during this bounce.
  (d) Average force exerted by the ground 
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if this impact lasts for 250 ms.
  (e) Average pressure exerted by the 

ball on the ground during this impact if 
contact area of the ball is 0.5 cm2.

    [Ans: 0.8, 5.12 m/s, 1.152N s, 
              4.608 N, 9.216×104 N/m2]
 xii) A spring ball of mass 0.5 kg is dropped 

from some height. On falling freely for 
10 s, it explodes into two fragments of 
mass ratio 1:2. The lighter fragment 
continues to travel downwards with 
speed of 60 m/s. Calculate the kinetic 
energy supplied during explosion. 

      [Ans: 200 J]
 xiii)  A marble of mass 2m travelling at 6 

cm/s is directly followed by another 
marble of mass m with double speed. 
After collision, the heavier one travels 
with the average initial speed of the two. 
Calculate the coefficient of restitution.

      [Ans: 0.5]
 xiv) A, 2 m long wooden plank of mass 20 

kg is pivoted (supported from below) at 
0.5 m from either end. A person of mass 
40 kg starts walking from one of these 
pivots to the farther end. How far can the 
person walk before the plank topples? 

      [Ans: 1.25 m]
 xv) A 2 m long ladder of mass 10 kg is kept 

against a wall such that its base is 1.2 m 

away from the wall. The wall is smooth 
but the ground is rough. Roughness of the 
ground is such that it offers a maximum 
horizontal resistive force (for sliding 
motion) half that of normal reaction at 
the point of contact. A monkey of mass 
20 kg starts climbing the ladder. How 
far can it climb along the ladder? How 
much is the horizontal reaction at the 
wall? 

     [Ans: 1.5 m, 15 N]
 xvi) Four uniform solid cubes of edges 10 

cm, 20 cm, 30 cm and 40 cm are kept on 
the ground, touching each other in order. 
Locate centre of mass of their system.  
    [Ans: 65 cm, 
17.7 cm]

 xvii) A uniform solid sphere of radius R has a 
hole of radius R/2  drilled inside it. One 
end of the hole is at the centre of the 
sphere while the other is at the boundary. 
Locate centre of mass of the remaining 
sphere.      
[Ans: -R/14 ] 

 xviii) In the following table, every item on the 
left side can match with any number of 
items on the right hand side. Select all 
those.

***

Types of collision Illustrations
(a) Elastic collision
(b) Inelastic collision
(c) Perfectly inelastic collision
(d) Head on collision

(i) A ball hit by a bat.
(ii) Molecular collisions responsible for pressure exerted by 
       a gas.
(iii) A stationary marble A is hit by marble B and the marble   
        B comes to rest.
(iv) A blob of clay dropped on the ground sticks to the ground.
(v) Out of anger, giving a kick to a wall.
(vi) A striker hits the boundary of a carrom board in a direction 
       perpendicular to the boundary and rebounds.
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5.1 Introduction:

All material objects have a natural 
tendency to get attracted towards the Earth. In 
many natural phenomena like coconut falling 
from trees, raindrops falling from the clouds, 
etc., the same tendency is observed. All bodies 
are attracted towards the Earth with constant 
acceleration. This fact was recognized by 
Italian physicist Galileo. He is said to have 
demonstrated it by releasing two balls of 
different masses from top of the leaning tower 
of Pisa which reached the ground at the same 
time.

Indian astronomer and mathematician 
Aryabhatta (476-550 A.D.) studied the motion 
of the moon, Earth and other planets in the 
5th century A.D. In his book ‘Aryabhatiya’, 
he concluded that the Earth revolves about its 
own axis and it moves in a circular orbit around 
the Sun. Also the moon revolves in a circular 
orbit around the Earth. Almost a thousand years 
after Aryabhatta, Tycho Brahe (1546-1601) and 
Johannes Kepler (1571-1630) studied planetary 
motion through careful observations. Kepler 
analysed the huge data meticulously recorded 
by Tycho Brahe and established three laws of 
planetary motion. He showed that the motion 
of planets follow these laws. The reason why 
planets obey these laws was provided by 
Newton. He explained that gravitation is the 
phenomenon responsible for keeping planets 
in their orbits around the Sun. The moon also 
revolves around the Earth due to gravitation. 
Gravitation compels dispersed matter to 
coalesce, hence the existence of the Earth, the 
Sun and all material macroscopic objects in the 
universe.

Every massive object in the universe 
experiences gravitational force. It is the force of 
mutual attraction between any two objects by 

Drawing an ellipse
An ellipse is the locus of the points in a plane 
such that the sum of their distances from two 
fixed points, called the foci, is constant.
You can draw an ellipse by the following 
procedure.
 1)  Insert two tacks or drawing pins, A and 

B, as shown in the figure into a sheet of 
drawing paper at a distance ‘d’ apart.

 2)  Tie the two ends of a piece of thread 
whose length is greater than ‘2d’ and 
place the loop around AB as shown in 
the figure.

 3)  Place a pencil inside the loop of thread, 
pull the thread taut and move the pencil 
sidewise, keeping the thread taut.

The pencil will trace an ellipse.

Do you know ?

1. When  released from certain height why do objects tend to fall vertically downwards?
2. What is the shape of the orbits of planets?   3. What are Kepler’s laws?

Can you recall?

virtue of their masses. It is always an attractive 
force with infinite range. It does not depend 
upon intervening medium. It is much weaker 
than other fundamental forces. Gravitational  
force is 10-39 times weaker than strong nuclear 
force.

5.2 Kepler’s Laws:

Kepler’s laws of planetary motion describe 
the orbits of the planets around the Sun. He 
published first two laws in 1609 and the third 
law in 1619. These laws are the result of the 
analysis of the data collected by Tycho Brahe 
through years of observations of the planetary 
motion.

Gravitation5.
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1  Law of orbit

All planets move in elliptical orbits 
around the Sun with the Sun at one of the 
foci of the ellipse.

Fig. 5.1: An ellipse traced by a planet with 
the Sun at the focus.

The orbit of a planet around the Sun is shown 
in Fig. 5.1. 

Here, S and S′ are the foci of the ellipse the Sun 
being at S.

  P is the closest point along the orbit from 
S and is, called ‘Perihelion’.

  A is the farthest point from S and is, called 
‘Aphelion’.

  PA is the major axis = 2a.

  PO and AO are the semimajor axes = a.

  MN is the minor axis =2b.

  MO and ON are the semiminor axes = b

2. Law of areas 

The line that joins a planet and the Sun 
sweeps equal areas in equal intervals of time. 

Kepler observed that planets do not move 
around the Sun with uniform speed. They move 
faster when they are nearer to the Sun while 
they move slower when they are farther from 
the Sun. This is explained by this law.  

Fig. 5.2: The orbit of a planet P moving 
around the Sun. 

Fig 5.2 shows the orbit of a planet. The shaded 
areas are the areas swept by SP, the line joining 
the planet and the Sun, in fixed intervals of time. 
These are equal according to the second law.

The law of areas can be understood as an 
outcome of conservation of angular momentum. 
It is valid for any central force. A central force 
on an object is a force which is always directed 
along the line joining the position of object and 
a fixed point usually taken to be the origin of 
the coordinate system. The force of gravity 
due to the Sun on a planet is always along the 
line joining the Sun and the planet (Fig. 5.2). 
It is thus a central force. Suppose the Sun is 
at the origin. The position of planet is denoted 
by r



 and the perpendicular component of its 

momentum is denoted by p


 (component ⊥ r


). 
The area swept by the planet of mass m in given 

interval ∆t is ∆A
� ���

 which is given by 

∆ ∆A r t
� ��� � �

=
1

2
( × v )     --- (5.1)

As for small ∆t , v


 is perpendicular to r


 and 
this is the area of the triangle.

�
�
�
A

t
r

� ��� � �
=

1

2
( × v)               --- (5.2)  

Linear momentum ( p


) is the product of mass 
and velocity. 

 p


 = mv


    --- (5.3)

... putting v


 = p


/m in the above equation, we 
get 

 

�
�
A

t
r

p

m

� ��� � ��
=

1

2
×

�

�
��

�

�
��

  
--- (5.4)

Angular momentum L
��

 is the rotational 
equivalent of linear momentum and is defined 
as

 ∴ L = r × p
�� � ��

   --- (5.5)
For central force the angular momentum is 

conserved.

�
�
�
A

t
=

L

2m
=

� ��� ��
constant

  
--- (5.6)

... This proves the law of areas. This is a 
consequence of the gravitational force being a 
central force.
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 3. Law of periods

The square of the time period of 
revolution of a planet around the Sun is 
proportional to the cube of  the semimajor 
axis of the ellipse traced by the planet.

If r is length of semimajor axis then, this 
law states that

        

or   constant

T r

T

r

2 3

2

3

�

�
   

--- (5.7)

Kepler’s laws were based on regular 
observations of the motion of planets.  Kepler 
did not know why the planets obey these laws,. 
i.e. he had not derived these laws.  

Table 5.1 gives data from measurements 
of planetary motions which confirm Kepler’s 
law of periods.

Table 5.1: Kepler’s third law

Planet Semi-major 
axis in units 

of 1010 m

Period  
in years

T2/r3

in units of 
10-34 y2m-3

Mercury
Venus
Earth   
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

5.79
10.8
15.0
22.8
77.8
143
287
450
590

0.24
0.615

1
1.88
11.9
29.5
84.
165
248

2.95
3.00
2.96
2.98
3.01
2.98
2.98
2.99
2.99

Example 5.1: What would be the average 
duration of year if the distance between the Sun 
and the Earth becomes

(A) thrice the present distance.

(B) twice the present distance.

Solution: 

(A) Let r
1
 = Present distance between the Earth 

and Sun

T = 365 days.

If r
2 
= 3r

1
, T2 = ? 

According to Kepler’s law of period

T
1

2 ∝ r
1

3 and T
2

2 ∝ r
2

3

  

� �

� �
�

�
�

�

�
�

�

�
�

�

�
�

T

T

r

r

T

T

r

r

r

r

2
2

1
2

2
3

1
3

2

1

2

1

3 2

1

1

3 2

/

/

         = 
3

�� �

� �

� �
�

T

T

T T

2

1

2 1

27

27

365 27

1897

    

    days

(B) If r2=2r1, T2
 = ?

  

T

T

r

r

T

T

r

r

T

T

T T

2
2

1
2

2
3

1
3

2
2

1
2

1

1

3

2

1

2 1

2

8

8

365 8

�

�
�

�
�

�

�
�

� �

�

�     

       days.�1032

5.3 Universal Law of Gravitation:

When objects are released near the surface 
of the Earth, they always fall down to the 
ground, i.e., the Earth attracts objects towards 
itself. Galileo (1564-1642) pointed out that 
heavy and light objects, when released from the 
same height, fall towards the Earth at the same 
speed, i.e., they have the same acceleration. 
Newton went beyond (the Earth and objects 
falling on it) and proposed that the force of 
attraction between masses is universal. Newton 
stated the universal law of gravitation which 
led to an explanation of terrestrial gravitation. 
It also explains Kepler’s laws and provides the 
reason behind the observed motion of planets 
around the Sun.

In 1665, Newton studied the motion of 
moon around the Earth. It was known that the 
moon completes one revolution about the Earth 
in 27.3 days. The distance from the Earth to 
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the moon is 3.85×105 km. The motion of the 
moon is in almost a circular orbit around the 
Earth with constant angular speed ω. As it is a 
circular motion, the moon must be constantly 
acted upon by a force directed towards the 
Earth which is at the centre of the circle. This 
force is the centripetal force, and is given by  
 F = mrω2   --- (5.8)

where m is the mass of the moon and r is the 
distance between the centres of the moon and 
the Earth.

Also we have F = ma from Newton’s laws 
of motion.

 ... ma = mrω2

 ... a = rω2    --- (5.9)

As angular velocity in terms of time period 
is given as

  �
�

�
2

T
   

we get 

  a r
T

=
2

2��
�
�

�
�
�     --- (5.10)

Substituting values of r and T, we get

a

a

�
� �
� � �

� �

3 85 10 10

27 3 24 60 60

0 0027

5 3

2 2

2

.

( . ) s

. /

4 m

 m s

2�

  

This is the acceleration of the moon which 
is towards the centre of the Earth, i.e., centre of 
orbit in which the moon revolves. What could 

The value of acceleration due to gravity 
can be assumed to be constant when we are 
dealing with objects close to the surface of 
the Earth. This is because the difference in 
their distances from the centre of the Earth 
is negligible.

Do you know ?

by an object due to the gravitational force of 
the Earth must be decreasing with distance of 
the body from the Earth. (Remember that the 
value of acceleration due to Earth’s gravity at 
the surface is 9.8 m/s2) 

We have,

 
a

a
object

moon

� �
9 8

0 0027
3600

2

2

. /

. /

 m s

 m s  

Also,
distance of moon from the Earth’s centre 
distance of object from the Earth’s centre

=
3.85×10 km

6378 km

5

≈ 60
 

Thus from the above two equations we get

� �
�

�
�

�

�
�

a

a
object

moon

distance of moon

distance of object

2

 --- (5.11)

Newton therefore concluded that the 
acceleration of an object towards the Earth is 
inversely proportional to the square of distance 
of object from the centre of the Earth.

 
� �a

r
F = ma

 

   

1
2

   
As,

Therefore, the force exerted by the Earth on an 
object of mass m at a distance r from it is   

 F
m

r2
∝   

Similarly an object also exerts a force on the 
Earth which is 

   
F

M

rE 2
∝

where M is the mass of the Earth.

According to Newton’s third law of 
motion, the force on a body due to the Earth has 
to be equal to the force on the Earth due to the 
object. Hence the force F is also proportional to 
the mass of the Earth. Hence Newton concluded 
that the gravitational force between the Earth 
and an object of mass m is 

 F
Mm

r
∝

2
 

He then generalized it to gravitational 
force between any two objects and stated his 

be the force which produces this acceleration?

Newton assumed that the laws of nature 
are the same for Earthly objects and for 
celestial bodies. As this acceleration is much 
smaller than the acceleration felt by bodies 
near the surface of the Earth (while falling on 
Earth), he concluded that the acceleration felt 
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Universal law of gravitation as follows. 

Every particle of matter attracts every 
other particle of matter with a force which is 
directly proportional to the product of their 
masses and inversely proportional to the 
square of the distance between them.

This law is applicable to all material 
objects in the universe. Hence it is known as 
the universal law of gravitation.

 
o

 
Fig. 5.3: Gravitational force between 
masses m

1
 and m

2
.

If two bodies of masses m
1
 and m

2
 are 

separated by a distance r, then the gravitational  
force of attraction between them can be written 
as

or, 

F
m m

r

F =G
m m

r

1 2
2

1 2
2

∝

     --- (5.12)

where G is a constant known as the universal 
gravitational constant. Its value in SI units is 
given by 

 G = 6.67×10-11N m2/kg2 

and its dimensions are 

 [G] = [L3M-1T-2].  

The gravitational force is an attractive 
force and it acts along the line joining the two 
bodies. The forces exerted by two bodies on each 
other have same magnitude but have opposite 
directions, they form an action-reaction pair.
Example 5.2: The gravitational force between 
two bodies is 1 N. If distance between them is 
doubled, what will be the gravitational force 
between them?
Solution: Let the masses of the two bodies be 
m

1
 and m

2
 and the distance between them be r.

The force between them, F
Gm m

r1
1 2
2

=

When the distance between them is doubled the 

force becomes, F
Gm m

r

Gm m

r2
1 2

2
1 2

2
=

(2 ) 4
=

 

          

� � �

� �

� � �

�

F

F
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F

F

F F

F

1

2
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2

2

1 2

1

2
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2
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4
1
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Force become one forth (0.25 N)�

Figure 5.3 shows two point masses m
1
 and 

m
2
 with position vectors r r

 

1 2 and  respectively 
from origin O. The position vector of  m

2
  

with respect to m
1
  is then given by 

r r r
  

21 2 1 = - . Similarly   r r r r
   

12 1 2 21 = - - =  and 

if r r r=
 

12 21 = , the formula for force on m
2
 

due to m
1
 can be expressed in vector form as,

  
F =G

m m

r
(-r

�� �
21

1 2
2 21)

  
--- (5.13)

where r 21 is the unit vector from m
1
 to m

2
. The 

force F
��

21  is directed from m
2
 to m

1
. Similarly, 

force experienced by m
1
 due to m

2 
is F
��

12   

 
F G

m m

r
r

�� �
12 2 12� �1 2 ( )

   
--- (5.14)

  � � �F F
�� ��

12 21    --- (5.15)

          
Fig. 5.4: gravitational force due to a 
collection of masses.
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This law refers to two point masses. For a 
collection of point masses, the force on any one 
of them is the vector sum of the gravitational 
forces exerted by all the other point masses. 
As shown in Fig. 5.4, the resultant force  
on point mass m

1
 is the vector sum of forces 

F
��

12 , F F
�� ��

13 14 and  due to point masses m
2
, m

3
 

and m
4
 respectively. Masses m

2
, m

3
 and m

4
 are 

also attracted towards mass m
1
 and there is also 

mutual attraction between masses m
2
, m

3
 and 

m
4 
but these forces are not shown in the figure.  

For n particles, force on ith mass F F
�� ��

i ij

j
j i

n

�
�
�

�
1

  

where F ij

��
 is the force on ith particle due to 

jth particle.

The gravitational force between an 
extended object like the Earth and a point mass 
A can be obtained by obtaining the vector sum 
of forces on the point mass A due to each of the 
point mass which make up the extended object. 
We can consider the following two special 
cases, for which we can get  a simple result. 
We will state the result here and show how it 
can be understood qualitatively.

(1) The gravitational force of attraction 
due to a hollow, thin spherical shell of uniform 
density, on a point mass situated inside it is 
zero.

This can be qualitatively understood as 
follows. First let us consider the case when the 
point mass A, is at the centre of the hollow thin 
shell. In this case as every point on the shell 
is equidistant from A, all points exert force of 
equal magnitude on A but the directions of these 
forces are different. Now consider the forces 
on A due to two diametrically opposite points 
on the shell. The forces on A due to them will 
be of equal magnitude but will be in opposite 
directions and will cancel each other. Thus 
forces due to all pairs of points diametrically 
opposite to each other will cancel and there 
will be no net force on A due to the shell. When 
the point object is situated elsewhere inside 
the shell, the situation is not so symmetric. 
Gravitational force varies directly with mass 
and inversely with square of the distance. Some 

part of the shell may be closer to point A, but 
its mass is less. Remaining part will then have 
larger mass but its centre of mass is away from 
A. However mathematically it can be shown 
that the net gravitational force on A is still 
zero, so long as it is inside the shell. In fact, 
the gravitational force at any point inside any 
hollow closed object of any shape is zero.  

(2) The gravitational force of attraction 
between a hollow spherical shell or solid sphere 
of uniform density and a point mass situated 
outside is just as if the entire mass of the shell 
or sphere is concentrated at the centre of the 
shell or sphere. 

Gravitational force caused by different 
regions of shell can be resolved into components 
along the line joining the point mass to the 
centre and along a direction perpendicular to 
this line. The components perpendicular to this 
line cancel each other and the resultant force 
remains along the line joining the point to the 
centre. By mathematical calculations it can be 
shown to be equal to the force that would have 
been exerted if the entire mass of the shell was 
present at the centre of the shell. 

It is obvious that case (2) is applicable for 
any uniform sphere (solid or hollow), so long as 
the point is outside the sphere. 

Example 5.3: Three particles A, B, and C each 
having mass m are kept along a straight line 
with AB = BC = l. A fourth particle D is kept on 
the perpendicular bisecter of AC at a distance l 
from B. Determine the gravitational force on D.

Solution : CD = AD = AB BD2 2 2� � l  
Gravitational force on D = Vector sum of 
gravitational forces due to A, B and C.
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Force due to A = 
G Gmm m

l( )AD 2

2

22
= . This will 

be along DA
� ���

Force due to C = 
G Gmm m

l( )CD 2

2

22
= . This is 

along DC
� ���

Force due to B = 
G Gmm m

l( )BD 2

2

2
= . This is 

along DB
� ���

We can resolve the forces along horizontal 
and vertical directions.

Let the unit vector along horizontal 

direction AC
� ���

 be i  and along the vertical 

direction BD
� ���

 be j

Net horizontal force on  D

� � � � �
G Gm

l
i

m

l
i

2

2

2

22
45 90cos ( ) cos ( ) 

                                � �
Gm

l
i

2

22
45cos ( )

� � �
-G Gm

l

m

l

2

2

2

22 2 2 2
0

Net vertical force on D

� � � � �
G Gm

l
j

m

l
j

2

2

2

22
45cos ( ) ( ) 

                                � � �
Gm

l
j

2

22
45cos ( )

� ��

�
�

�

�
�

� ��

�
�

�

�
� �

-G

G

m

l
j

m

l
j

2

2

2

2

1

2
1

1

2
1

( )

( )





( )- j shows that the net force is directed 
along DB 

5.4 Measurement of the Gravitational 

      Constant (G):

The magnitude of the gravitational 
constant G can be found by measuring the force 
of gravitational attraction between two bodies 
of masses m

1
 and m

2
 separated by certain 

distance ‘L’.This can be measured by using the 
Cavendish balance.

The Cavendish balance consists of a light 
rigid rod. It is supported at the centre by a fine 

vertical metallic fibre about 100 cm long. Two 
small spheres s

1
 and s

2
 of lead having equal 

mass m and diameter about 5 cm are mounted 
at the ends of the rod and a small mirror M is 
fastened to the metallic fibre as shown in Fig. 
5.5. The mirror can be used to reflect a beam of 
light onto a scale and thereby measure the angel 
through which the wire will be twisted. 

Two large lead spheres L
1
 and L

2
 of equal 

mass M and diameter  of about 20 cm are 
brought close to the small spheres on opposite 
side as shown in Fig. 5.5. The big spheres attract 
the nearby small spheres by equal and opposite 
force. Let F

��
 be the force of attraction between 

a big sphere and small sphere near to it. Hence 
a torque will be generated without exerting any 
net force on the bar. Due to this torque the bar 
turns and the suspension wire gets twisted till 
the restoring torque due to the elastic property 
of the wire becomes equal to the gravitational 
torque.

The gravitational force between the 
spherical balls is the same as if their masses are 
concentrated at their centres. If r is the initial 
distance of separation between the centres of 
the big and the neighbouring small sphere, then 
the magnitude of the force between them is

  F =G
mM

r2   

If length of the rod is L, then the magnitude 
of the torque arising out of these forces is

 
τ = FL =G

mM

r
L

2
  

--- (5.16)

At equilibrium, it is equal and opposite to 
the restoring torque.

�G
mM

r
L

2
= K�      --- (5.17) 

where K is the restoring torque per unit angle 
and θ is the angle of twist. 

By applying a known torque τ
1
 and 

measuring the corresponding angle of twist 
α, the restoring torque per unit twist can be 
determined as K = τ

1
/α .

Thus, in actual experiment measuring θ 
and knowing values of τ, m, M and r, the value 
of G can be calculated from Eq. (5.17). The 
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gravitational constant measured in this way is 
found to be 

G = 6.67×10-11N m2/kg2

         
Fig 5.5 : The Cavendish balance.

5.5 Acceleration due to Gravity: 

We have seen in section 5.3 that the 
magnitude of the gravitational force on a point 
object of mass m due to another point object of 
mass M at a distance r from it is given by the 
equation.

 F =G
mM

r2

This formula can be used to calculate 
the gravitational force on an object due to the 
Earth. We know that the Earth is an extended 
object. In many practical applications Earth 
can be assumed to be a uniform sphere. As seen 
in section 5.3 its entire mass can be assumed to 
be concentrated at is centre. Thus if the mass 
of the Earth is M and that of the point object 
is m and the distance of the point object from 
the centre of the Earth is r then the force of 
attraction between them is given by

 F =G
Mm

r2
  

If the point object is not acted upon by 
any other force, it will be accelerated towards 
the  centre of the Earth under the action of this 
force. Its acceleration can be calculated by 
using Newton’s second law F = ma.

Acceleration due to the gravity of the Earth =  

 G
Mm

r
×

1

m

=
GM

r

2

2

       
     --- (5.18)

This is known as the acceleration due to 

gravity of the Earth and denoted by g.

If the object is close to the surface of the 
Earth, r ≅ R, the radius of the Earth then 

 g
 Earth’s surface

 = 
GM

R2    --- (5.19)

Example 5.4: Calculate mass of the Earth from 
given data, 
  Acceleration due to gravity g = 9.81m/s2

  Radius of the Earth R
E
 = 6.37×106 m

  G = 6.67×10-11 N m2/kg2

Solution:

   

g =
GM

R

M =
gR

G

M

M

E

E

E

E

E

E

2

2

6 2

11

9 81 6 37 10

6 67 10

5 97 10

�

� �
� �

�
� � �

�

. ( . )

.

. 224 kg  

The value of g depends only on the 
properties of the Earth and does not depend 
on the mass of the object. This is exactly what 
Galileo had found from his experiments of 
dropping objects with different masses from the 
same height.

An object of mass m (much smaller 
than the mass of the Earth) is attracted 
towards the Earth and falls on it. The 
Earth is also attracted by the same force 
(magnitude) toward the mass m. However, 
its acceleration towards m will be 

a =
G

Mm
r

M
= 

Gm

r
a

g
=

m

M

GM

r

earth

2

2

earth
2

�
�
�

�
�
�

� ��
�
�          as  g

��
�
�

As m << M, a
Earth

<< g and is nearly 
zero. Thus, practically only the mass m 
moves towards the Earth. 

Do you know ?

Example 5.5: Calculate the acceleration due 
to gravity on the surface of moon if mass of 
the moon is 1/80 times that of the Earth and 
diameter of the moon is 1/4 times that of the 
Earth (g =9.8 m/s2)
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Solution: 

M
m
 = Mass of the moon = M/80, 

where M is mass of the Earth.

R
m
 = Radius of the moon = R/4,

where R is Radius of the Earth.

Acceleration due to gravity on the surface 
of the Earth, g = GM/R2   --- (1) 

Acceleration due to gravity on the surface 

of the moon, g
m
=GMm/ Rm

2
             --- (2)

... From equation (1) and (2)

g

g
=

M

M
×

R

R

g

g

g

g

g

g

m m

m

m

m

m

m

�

�
�

�

�
�

� � �
��
�
��

� �

� � �

� �

2

4

1

1

80

1

5

5

9 8

5

1

2

g .

..96 2 m / s

Example 5.6: Find the acceleration due to 
gravity on a planet that is 10 times as massive 
as the Earth and with radius 20 times of the 
radius of the Earth (g = 9.8 m/s2).

Solution : Let mass of the planet be M
p
, radius 

of the Earth and that of the planet be R
E  

and R
P
 

respectively. Let mass of the Earth be M
E
 and g

p 

be acceleration due to gravity on the planet. 

 

M M

R R g

g

g =
GM

R
g

GM

R

g
G

p E

p E

p

E
P

P

P

= 10 

= 20 ,  = 9.8 m / s

= ?

=

=

2

E P
2 2

,  

∴
((10 )

(20 )

        =

        =
1

40

        = 0.

2

M

R

GM

R

g

E

E

E10

400 E
2

2245 m / s2

5.6 Variation in the Acceleration due to 
Gravity with Altitude, Depth, Latitude 
and Shape:

(A) Variation in g with Altitude: 
Consider a body of mass m on the surface 

of the Earth. The acceleration due to gravity on 
the Earth’s surface is given by,

  
g =

GM

R2

Fig. 5.6 Acceleration due to gravity at 
height h above the Earth’s surface.

When the body is at height h above the 
surface of the Earth as shown in Fig. 5.6, 
acceleration due to gravity changes to 

 

g =
GM

(R +h)

g

g
=

GM
(R +h)

GM
R

g

g
=

R

(R +h)

g =
g R

(R +h)

h

h

h

h

2

2

2

2

2

2

2

∴

∴

∴    --- (5.20)

This equation shows that, the acceleration 
due to gravity goes on decreasing with increase 
in altitude of body from the surface of the Earth. 
We can rewrite Eq. (5.20) as

 

   g =
g R

R 1+
h
R

g = g 1+
h

R

h

h

2

2
2

-2

�
�
�

�
�
�

� �
�
�

�
�
�

For small altitude h, i.e., for  
h

R
<< 1,

� �
�
�

�
�
�g g

2h

Rh  1-     --- (5.21)
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(by neglecting higher power terms of 
h

R

h

R
  as   << 1)

This expression can be used to calculate 
the value of g at height h above the surface of 
the Earth as long as h << R.

Example 5.7 : At what distance above the 
surface of Earth the acceleration due to gravity 
decreases by 10% of its value at the surface? 
(Radius of Earth = 6400 km). Assume the 
distance above the surface to be small compared 
to the radius of the Earth.  

Solution : g
h
 = 90% of g  (g decreases by 10% 

hence it becomes 90%)

or, 
g

g
h = =

90

100
0 9.

From Eq. (5.21)

     

g = g 1-
2h

R

g

g
=1-

2h

R

0.9 =1-
2h

R

h =
R

20
h =320 

h

h

�
��

�
��

�

�

km

(B) Variation in g with Depth:
The Earth can be imagined to be a sphere 

made of large number of concentric uniform 
spherical shells. The total mass of the Earth 
is the combined mass of all the shells. When 
an object is on the surface of the Earth it 
experiences the gravitational force as if the 
entire mass of the Earth is concentrated at its 
centre.

      
Fig. 5.7 Acceleration due to gravity at depth 
d below the surface of the Earth.

The acceleration due to gravity according 
to eq. (5.19) is

g =
GM

R2

Assuming that the density of the Earth is 
uniform, it is given by 

 

�

� �

�

�

Mass

Volume

 (M)

(V)

M =
4

3
R3

 

� �
�

� �

g
G

g

4
3

4

3

3

2

� �

� �

R

R

R G    --- (5.22)

Consider a body at a point P at the depth 
d below the surface of the Earth as shown in 
Fig. 5.7. Here the force on a body at P due to 
the material outside the inner sphere shown by 
shaded region, can be shown to cancel out due 
to symmetry. The net force on P is only due to 
the material inside the inner sphere of radius OP 
= R - d. Acceleration due to gravity because of 
this sphere is

g =
GM

(R - d)d

′
2

where M ' = volume of the inner sphere×density

� � � �

� �
�

� � �

M R - d

g
G R - d

R - d

R - d

d

4

3
4
3

4

3

3

3

2

� �

� �

� �

( )

( )

( )

( )

gd G
  

--- (5.23)  
   

Dividing Eq. (5.23) by Eq. (5.22) we get,

  

�

�

� �
��

�
��

g

g
=

R - d

R

g

g
= -

d

R

g = g -
d

R

d

d

d

1

1
  

--- (5.24)

This equation gives acceleration due to 
gravity at depth d below the Earth's surface. 
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It shows that the acceleration due to gravity 
decreases with depth.

Special case : 

At the centre of the Earth, where d = R, Eq. 
(5.24) gives gd = 0

Hence, a body of mass m if taken to the 
centre of Earth, will not experience the force 
of gravity due to the Earth. This can also be 
understood to be due to symmetry. The case 
is similar to the force of gravity on an object 
placed at the centre of  a spherical shell as seen 
in section 5.3.

Thus, the value of acceleration due to 
gravity is maximum at the surface of the Earth. 
The value goes on decreasing with 

1) increase in depth below the Earth’s 
surface.  (varies linearly with (R-d) = r)

2) increase in height above the Earth’s 
surface. (varies inversely with (R+h)2 = r 2)

Graphically the variation of acceleration 
due to gravity according to depth and height 
can be expressed as follows. We have plotted 
the value of g as a function of r, the distance 
from the centre of the Earth, in Fig. 5.8. For r 
< R i. e. below the surface of the Earth, we use 

Eq. (5.24), according to which g
d
 = g 1��

�
�

�
�
�

d

R
Writing R - d = r, the distance from the 

centre of the Earth, we get the value of g as a 

function of r, g(r) = g
r

R
 which is the equation 

of a straight line with slope g/R and passing 
through the origin.

Fig 5.8 - Variation of g due to depth and 
altitude from the Earth’s surface.

For r > R we have to use Eq. (5.20). Writing

R + h = r we have

g(r) = g

r

 R2

2
 which is plotted in Fig. 5.8

(C) Variation in g with Latitude and Rotation 
of the Earth: 

Latitude is an angle made by radius vector 
of any point from centre of the Earth    with the 
equatorial plane. Obviously it ranges from 00 at 
the equator to 900 at the poles.

        

Fig. 5.9 Variation of g with latitude.
The Earth rotates about its polar axis from 

west to east with uniform angular velocity ω. 
Hence every point on the surface of the Earth 
(except the poles) moves in a circle parallel to 
the equator. The motion of a mass m at point P 
on the Earth is shown by the dotted circle with 
centre at O′ in Fig. 5.9.  Let the latitude of P be 
θ and radius of the circle be r.

       PO′ = r
 ∠ EOP = θ,   E being a point on the 

equator
∴ ∠ OPO′ = θ

In ∆ OPO′, cosθ = 
PO

PO

�
�

r

R
        ∴ r = Rcos θ
The centripetal acceleration for the mass 

m, directed along PO′ is  
 a

  
= rω2

 a
  
= Rω2cosθ

The component of this centripetal 
acceleration along PO, i.e., towards the centre 
of the Earth is  

a
r
 = a

 
cosθ

∴ a
r
 = Rω2cosθ.cosθ

a
r
 = Rω2cos2θ

Part of the gravitational force of attraction 
on P acting towards PO is utilized in providing 
this components of centripetal acceleration. 

Thus the effective force of gravitational 
attraction on m at P can be written as   

mg ′ = mg - mRω2cos2θ   
g ′ being the effective acceleration due to 

gravity at P i.e., at latitude θ. This is thus given 
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by g ′ = g - Rω2cos2θ     --- (5.25)    
As the value of θ increases, cosθ decreases. 

Therefore g′ will increase as we move away 
from equator towards any pole due to the 
rotation of the Earth.
special case I At equator θ = 0

  cos θ = 1
  g′ = g - Rω2 

The effective acceleration due to gravity 
is minimum at equator, as here it is reduced by 
maximum amount. The reduction here is g - g′ 
= Rω2  

R = 6.4 ×106 m ---Radius of the Earth and 

ω = Angular velocity of rotation of the 
Earth
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2

2
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7 275 10 5 1

T

g g R

g g

24

s

 - =

 - = 0.03386

2

. -

  m / s2

Case II At poles θ = 900

  cosθ = 0
  ... g′ = g - Rω2 cos θ
          = g - 0
          = g 
 There is no reduction in acceleration due to 

gravity at poles, due to the rotation of the Earth 
as the poles are lying on the axis of rotation and 
do not revolve.

Variation of g with latitudes at sea level is 
given in the following table.

Table 5.2: Variation of g with latitude

Latitude (°) g (m/s2)

0
10
20
30
40  
50
60
70
80
90

9.7804
9.7819
9.7864
9.7933
9.8017
9.8107
9.8192
9.8261
9.8306
9.8322

Effect of the shape of the Earth: Quite often 
we assume the Earth to be a sphere. However, 
it is actually on ellipsoid; bulged at equator. 
Hence equatorial radius of Earth (6378 km) is 
greater than the polar radius (6356 km). Thus, 
on the equator, there is combined effect of 
greater radius and rotation in reducing the force 
of gravity. As a result, the acceleration due to 
gravity on the equator is g

E
 = 9.7804 m/s2 and 

on the poles it is  g = 9.8322 m/s2.  
Weight of an object is the force with which 

the Earth attracts that object. Thus, weight  
w = mg where m is the mass of the object. As 
the value of g changes with altitude, depth and 
latitude, the weight also changes. Weight of an 
object is minimum at the equator. Similarly, 
the weight of an object reduces with increasing 
height above the Earth’s surface and with 
increasing depth below the its surface.

5.7 Gravitational Potential and Potential 
Energy:
In earlier standards, you have studied 

potential energy as the energy possessed by an 
object on account of its position or configuration. 
The word configuration corresponds to the 
distribution of the particles in the object. 
More specifically, potential energy is the work 
done against conservative force (or forces) in 
achieving a certain position or configuration 
of a given system. It always depends upon the 
relative positions of the particles in that system. 
There is a universal principle that states, Every 
system always configures itself in order to 
have minimum potential energy or every 
system tries to minimize its potential energy. 
Obviously, in order to change the configuration, 
you will have to do work.
Examples: 
(I)  A spring in its natural state, possesses 
minimum potential energy. Whenever we stretch 
it or compress it, we perform work against the 
conservative force (in this case, the elastic 
restoring force). Due to this work, the relative 
distances between the particles of the system 
change (configuration changes) and its potential 
energy increases. The spring finally regains its 
original configuration of minimum potential 
energy on removal of the applied force.
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(II) When an object is lying on the Earth, the 
system of that object and the Earth has minimum 
potential energy. This is the gravitational 
potential energy of the system as these two are 
bound by the gravitational force. While lifting 
the object to some height (new position), we 
do work against the conservative gravitational 
force in order to achieve the new position. 
  In its new position, the object is at rest due 
to balanced forces. If you are holding the object, 
the force of static friction between the object and 
your fingers balances the gravitational force. 
If kept on a surface, the normal reaction force 
given by the surface balances the gravitational 
force. However, now, the object has a capacity 
to acquire kinetic energy, when given an 
opportunity (when allowed to fall). We call this 
increase in the capacity as the potential energy 
gained by the system. As we raise it more and 
more, this capacity, and hence potential energy 
of the system, increases. It falls on the Earth to 
achieve the configuration of minimum potential 
energy on dropping it from the new position.
Thus, in general, we can write work done 
against a conservative force acting on an 
object = Increase in the potential energy of 
the system. 
 � �F dx dU

�� �
.

Here dU is the change in potential energy 

while displacing the object through dx F
� ��
,  being 

the force acting on the object 
It should be remembered that potential 

energy is always of the system as a whole. For 
an object on the Earth, it is of the system of the 
object and the Earth and not only of that object. 
There is no meaning to potential energy of an 
isolated object in the intergalactic (gravity free) 
space, in the absence of any conservative force 
acting upon it.
5.7.1 Expression for Gravitational Potential   
         Energy:

Work done against gravitational force 
F g

��
, in displacing an object through a small 

displacement dr
 , appears as increase in the 

potential energy of the system. 
� � �dU F drg

�� �
.

 
Negative sign appears because dU is the 

work done by us (external agent) against the 

gravitational force  F g

��

For displacement of the object from an 
initial position 



ri  to the final position 


rf  , the 
change in potential energy ∆U, can be obtained 
by integrating dU.
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Gravitational force of the Earth, F
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where r  is the  unit vector in the direction of 

r


.  Negative sign appears here because r
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from centre of the Earth to the object and F g

��
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directed towards centre of the Earth.
∴ For ‘Earth and mass’ system,
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Change in potential energy corresponds 
to the work done against conservative forces. 
The absolute value of potential energy is not 
defined. It is logical as well as convenient to 
choose the point of zero potential energy to be 
the point of zero force. For gravitational force, 
such point is taken at r � � . This point should 
be chosen as the initial point so that initially the 
potential energy is zero. ∴U (r

i
) = 0 at r

i
 =

 
∞ 

Final point rf  is obviously the point where we 
need to determine the potential energy of the 
system. � �r rf

 

� � �
�

�
��

�

�
��

�
�
��

�
�

�

U GMm
r r

GMm
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� �                
GMm

r  --- (5.27)
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This is gravitational potential energy of the 
system of object of mass m and Earth of mass 
M having separation r (between their centres of 
mass).
Example 5.8: What will be the change in 
potential energy of a body of mass m when it is 
raised from height R

E
 above the Earth’s surface 

to 5/2 R
E
 above the Earth’s surface? R

E
 and M

E
 

are the radius and mass of the Earth respectively.
Solution:  

 

��U GmM
r r

GmM
R R

E
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E E
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.
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5.7.2 Connection of potential energy formula 
with mgh:

If the object is on the surface of Earth,  r R=   

� � �U
GMm

R1

If the object is lifted to height h above the 
surface of Earth, the potential energy becomes 

U
GMm

R h2 � � �
 

Increase in the potential energy is given by

 

�U U U
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R h R
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R R h
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GMmh

R R h

If g is acceleration due to the Earth on the 
surface of Earth, GM gR= 2

 
� �

�
�
�
�

�
�
��U mgh

R

R h  
  --- (5.28)

Eq. (5.28) gives the work to be done (or energy 
to be supplied) to raise an object of mass m to a 
height h, above the surface of the Earth.
If h R

, we�can�use�R h R� � .  Only in this 
case �U mgh�     --- (5.29)

Thus, mgh is increase in the gravitational 
potential energy of the  Earth -mass system if an 
object of mass m is lifted to a height h, provided 
h is negligible compared to radius of the  Earth 
(up to a few kilometers).
5.7.3 Concept of Potential:

From eq. (5.27),  the gravitational potential 
energy of the system of  Earth  and any mass 
m at a distance r from the centre of the Earth is 
given by

 

U
GMm

r
GM

r
m

V mE r

� �

� ��
�
�

�
�
�

� � ��� ��

    

    
   

--- (5.30)

The factor � � � �GM

r
VE r

 depends only upon 
 
mass of Earth and the location. Thus, it is 
the same for any mass m bound to the Earth. 
Conveniently, this is defined as the gravitational 
potential of Earth at distance r from its centre. 
In terms of potential, we can write the potential 
energy of the Earth-mass system as

Gravitational potential energy, U = Gravitational 
potential V

r 
× mass m or Gravitational potential 

is Gravitational potential energy per unit mass, 

i.e.,V
U

mr = . The concept of potential can be 

defined on similar lines for any conservative 

force field.

Gravitational potential difference between 
any two points in gravitational field can be 
written as 

 V V
U U

m

dW

m2 1
2 1� �
��

�
�

�
�
� �    --- (5.31)

= Work done (or change in potential energy) per 
unit mass

In general, for a system of any two masses m
1
 

and m
2
, separated by r, we can write

Gravitational potential energy, 

� �U
Gm m

r
V m V m�� � � � � � �1 2

1 2 2 1
          

---(5.32)

Here V
1
 and V

2
 are gravitational potentials at r 

due to m
1
 and m

2
 respectively.
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5.7.4 Escape Velocity:
When any object is thrown vertically up, it 

falls back to the Earth after reaching a certain 
height. Higher the speed with which the object is 
thrown up, greater will be the height. If we keep 
on increasing the velocity, a stage will come 
when the object will reach heights so large that 
it will escape the gravitational field of the Earth 
and will not fall back on the Earth. This initial 
velocity is called the escape velocity. 

Thus, the minimum velocity with which a 
body should be thrown vertically upwards from 
the surface of the Earth so that it escapes the 
Earth’s gravitational field, is called the escape 
velocity (ve) of the body. Obviously, as the 
gravitational force due to Earth becomes zero 
only at infinite distance, the object has to reach 
infinite distance in order to escape.

Let us consider the kinetic and potential 
energies of an object thrown vertically upwards 
with escape velocity v

e
, when it is at the surface 

of the Earth and when it reaches infinite distance.
On the surface of the Earth,

K.E. = 
1

2
2m ev

P.E. = -
GMm

R
Total energy = P.E. + K.E. 

           = 
1

2
2m ev -

GMm

R
          --- (5.33)

The kinetic energy of the object will go 
on decreasing with time as it is pulled back by 
Earth’s gravitational force. It will become zero 
when it reaches infinity. Thus at infinite distance 
from the Earth   

 K.E. = 0

Also,  P.E. = �
�

GMm
= 0

∴ Total energy = P.E. + K.E. = 0
As energy is conserved

 
1

2
2m ev -

GMm

R
 = 0

or, v
e
 = 

2GM

R
      --- (5.34)

Using the numerical values of G, M and R. 
the escape velocity is 11.2 km/s. 

5.8 Earth Satellites: 
The objects which revolve around the 

Earth are called Earth satellites. moon is the 
only natural satellite of the Earth. It revolves 
in almost a circular orbit around the Earth 
with period of revolution of nearly 27.3 days. 
Artificial satellites have been launched by 
several countries including  India. These 
satellites have different periods of revolution 
according to their practical use like navigation, 
surveillance, communication, looking into 
space and monitoring the weather.
Communication Satellites: These are 
geostationary satellites. They revolve around the 
Earth in equatorial plane. They have same sense 
of rotation as that of the Earth and the same period 
of rotation as that of the Earth, i. e., one day 
or 24 hours. Due to this, they appear stationary 
from the Earth’s surface. Hence they are called  
geostationary satellites or geosynchronous 
satellites. These are used for communication, 
television transmission, telephones and 
radiowave signal transmission, e.g., INSAT 
group of satellites launched by India.
Polar Satellites: These satellites are placed 
in lower polar orbits. They are at low altitude 
500 km to 800 km. Polar satellites are used 
for weather forecasting and meteorological 
purpose. They are also used for astronomical 
observations and study of Solar radiations.

Period of revolution of polar satellite is 
nearly 85 minutes, so it can orbit the Earth16 
time per day. They go around the poles of the 
Earth in a north-south direction while the Earth 
rotates in an east-west direction about its own 
axis. The polar satellites have cameras fixed 
on them. The camera can view small stripes of 
the Earth in one orbit. In entire day the whole 
Earth can be viewed strip by strip. Polar and 
equatorial regions at close distances can be 
viewed by these satellites.
5.8.1 Projection of Satellite:

For the projection of an artificial satellite, 
it is necessary for the satellite to have a certain 
velocity and a minimum two stage rocket. A 
single stage rocket can not achieve this. When 
the fuel in first stage of rocket is ignited on 
the surface of the Earth, it raises the satellite 
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vertically. The velocity of projection of satellite 
normal to the surface of the Earth is the vertical 
velocity. If this vertical velocity is less that the 
escape velocity (v

e
), the satellite returns to the 

Earth’s surface. While, if the vertical velocity is 
greater than or equal to the escape velocity, the 
satellite will escape from Earth’s gravitational 
influence and go to infinity. Hence launching 
of a satellite in an orbit round the Earth can 
not take place by use of single stage rocket. It 
requires minimum two stage  rocket.

With the help of first stage of rocket, 
satellite can be taken to a desired height above 
the surface of the Earth. Then the launcher is 
rotated in horizontal direction i.e. through 900 
using remote control and the first stage of the 
rocket is detached. Then with the help of second 
stage of rocket, a specific horizontal velocity 
(v

h
) is given to satellite so that it can revolve 

in a circular path round the Earth. The exact 
horizontal velocity of projection that must be 
given to a satellite at a certain height so that it 
can revolve in a circular orbit round the Earth is 
called the critical velocity or orbital velocity 
(vc) 

A satellite follows different paths depending 
upon the horizontal velocity provided to it. Four 
different possible cases are shown in Fig. 5.10.
Case (I) v

h
<v

c
:

If tangential velocity of projection v
h
 is less 

than the critical velocity, the orbit of satellite is 
an ellipse with point of projection as apogee 
(farthest from the Earth) and Earth at one of the 
foci.

  
Fig. 5.10: Various possible orbits depending 
on the value of v

h
.

During this elliptical path, if the satellite 
passes through the Earth’s atmosphere, it 
experiences a nonconservative force of air 
resistance. As a result it loses energy and spirals 
down to the Earth.
Case (II) v

h
=v

c

If the horizontal velocity is exactly equal 
to the critical velocity, the satellite moves in a 
stable circular orbit round the Earth.
Case (III) v

c
<v

h
<v

e
 

If horizontal velocity is greater than 
the critical velocity and less than the escape 
velocity at that height, the satellite again moves 
in an elliptical orbit round the Earth with the 
point of projection as perigee (point closest to 
the Earth).
Case (IV)  v

h 
= v

e
 

If horizontal speed of projection is equal 
to the escape speed at that height, the satellite 
travels along parabolic path and never returns 
to the point of projection. Its speed will be zero 
at infinity. 
Case (V)  v

h 
> v

e
 

If horizontal velocity is greater than the 
escape velocity, the satellite escapes from 
gravitational influence of  Earth  transversing a 
hyperbolic path.  
 Expression for critical speed 

Consider a satellite of mass m revolving 
round the Earth at height h above its surface.

Let M be the mass of the Earth and R be 
its radius. If the satellite is moving in a circular 
orbit of radius (R+h) = r, its speed must be the 
magnitude of critical velocity v

c
.

The centripetal force necessary for circular 
motion of satellite is provided by gravitational 
force exerted by the Earth on the satellite. 

∴ Centripetal force = Gravitational force 
m

r
=

GMm

r

=
GM

r
 

= 
GM

r

=
GM

(R +h)
R +h

c

c

c

c

v

v

v

v

2

2

2�

�

� � gh ( )
    

--- (5.35)
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This is the expression for critical speed in 
the orbit of radius (R + h)

It is clear that the critical speed of a 
satellite is independent of the mass of the 
satellite. It depends upon the mass of the Earth 
and the height at which the satellite is revolving 
or gravitational acceleration at that altitude. 
The critical speed of a satellite decreases with 
increase in height of satellite.
Special case  

When the satellite is revolving close to the 
surface of the Earth, the height is very small as 
compared to the radius of the Earth. Hence the 
height can be neglected and radius of the orbit is 
nearly equal to R (i.e R>>h, R+h ≈ R)

... Critical speed vc

GM

R
=

As G is related to acceleration due to 
gravity by the relation,

g =
GM

R
 

GM = gR

2

2∴

... Critical speed in terms of acceleration 
due to gravity can be obtained as

v
2

c =
gR

R
= gR

 
     = 7.92 km/s 

Obviously, this is the maximum possible critical 
speed. This is at least 25 times the speed of the 
fastest passenger aeroplanes.
Example 5.9: Show that the critical velocity of 
a body revolving in a circular orbit very close 
to the surface of a planet of radius R and mean 

density ρ is 2
3

R
G��

.

Solution : Since the body is revolving very 
close to the planet,  h = 0

           

density 
4
3

4

3

3

3

�
�

� �

�

�

M

V
=

M

R

M = R

Critical Velocity

  
v =     = 

R
 c

GM

R

G R
4
3

3� �

  
�v =   c 2

3
R

G��

  When a satellite revolves very close to 
the surface of the Earth, motion of satellite 
gets affected by the friction produced due to 
resistance of air. In deriving the above expression 
the resistance of air is not considered.
5.8.2 Weightlessness in a Satellite:

According to Newton’s second law of 
motion,  F = ma , where F is the net force acting 
on an object having acceleration a.

Let us consider the example of a lift or 
elevator from an inertial frame of reference. 

Whether the lift is at rest or in motion, a 
passenger in it experiences only two forces: 
(i) Gravitational force mg  directed vertically 
downwards (towards centre of the earth) and 
(ii) normal reaction force N directed vertically 
upwards, exerted by the floor of the lift. As these 
forces are oppositely directed, the net force in 
the downward direction will be F = ma - N .

Though the weight of a body (passenger, in 
this case) is the gravitational force acting upon 
it, we experience or feel our weight only due 
to the normal reaction force N exerted by the 
floor. This, in turn, is equal and opposite to the 
relative force between the body and the lift. If 
you are standing on a weighing machine in a 
lift, the force recorded by the weighing machine 
is nothing but the normal reaction N.

Case I: Lift having zero acceleration

This happens when the lift is at rest or is 
moving upwards or downwards with constant 
velocity:

The net force  F = 0 = mg - N ∴ mg =N

Hence in this case we feel our normal 
weight mg .

Case II: Lift having net upward acceleration a
u
 

This happens when the lift just starts 
moving upwards or is about to stop at a lower 
floor during its downward motion (remember, 
while stopping during downward motion, the 
acceleration must be upwards).
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As the net acceleration is upwards, the 
upward force must be greater. 

∴ F = ma
u 
= N - mg ∴ N = mg + ma

u
, i.e., 

N > mg, hence, we feel heavier. 

It should also be remembered that this is 
not an apparent feeling. The weighing machine 
really records a reading greater than mg.

Case III (a): Lift having net downward 
acceleration a

d
  

This happens when the lift just starts 
moving downwards or is about to stop at a higher 
floor during its upward motion (remember, 
while stopping during upward motion, the 
acceleration must be downwards).

As the net acceleration is downwards, the 
downward force must be greater. 

∴ F = ma
d 
=  mg -N ∴ N = mg - ma

d 
,
 
i.e., 

N < mg, hence, we feel lighter. 

It should be remembered that this is not an 
apparent feeling. The weighing machine really 
records a reading less than mg.

Case III (b): State of free fall: This will be 
possible if the cables of the lift are cut. In this 
case, the downward acceleration a

d
 = g.

If the downward acceleration becomes 
equal to the gravitational acceleration g, we get,  
N = mg - ma

d
 = 0.

Thus, there will not be any feeling of 
weight. This is the state of total weightlessness 
and the weighing machine will record zero.

In the case of a revolving satellite, the 
satellite is performing a circular motion. The 
acceleration for this motion is centripetal, which 
is provided by the gravitational acceleration  
g at the location of the satellite. In this case,  
a

d
 = g, or the satellite (along with the astronaut) 

is in the state of free fall. Obviously, the apparent 
weight will be zero, giving the feeling of total 
weightlessness. Perhaps you might have seen 
in some videos that the astronauts are floating 
inside the satellite. It is really difficult for them 
to change their position. 

In spite of free fall, why is the satellite 

not falling on the earth? The reason is that the 
revolving satellite is having a tangential velocity 
which manages to keep it moving in a circular 
orbit at that height.
5.8.3 Time Period of a Satellite: 

The time taken by a satellite to complete 
one revolution round the Earth is its time period.

Consider a satellite of mass m projected to 
height h and provided horizontal velocity equal 
to the critical velocity. The satellite revolves in 
a circular orbit of radius (R+h) = r.

The distance traced by satellite in one 
revolution is equal to the circumference of the 
circular orbit within periodic time T.

� Critical speed = 
Circumference of the orbit

Time period 

                     v = 
2

but we have, v =

            

c

c

� r

T

Gm

r

�� �

�

� �

Gm

r

r

T
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r

r

T

T
r

2

or,           
4

               
4

2 2

2

2
2

�

�

� 33

GM

As π2, G and M are constant, T 2 ∝ r3, i.e., 
the square of period of revolution of satellite is 
directly proportional to the cube of the radius 
of orbit. 

 

    T
r

GM

T
(R +h)

GM

= 2

2

3

3

�

�� �
    

--- (5.36)

This is an expression for period of satellite 
revolving in a circular orbit round the Earth. 
Period of a satellite does not depend on its 
mass. It depends on mass of the Earth, radius 
of the Earth and the height of the satellite. If 
the height of projection is increased, period of 
the satellite increases. Period of the satellite can 
also be obtained in terms of acceleration due to 
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gravity.

As GM = gh (R+h)2

�

�

�

T = 2
(R +h)

g (R +h)

T = 2
R +h

g

T = 2
r

g

h

h

h

�

�

�

3

2

  

--- (5.37)

Special case : 

When satellite revolves close to the surface 
of the Earth, R + h ≈ R and g

h 
≈ g. Hence the 

minimum period of revolution is 

 
(T) =

R

gmin 2π
  

--- (5.38)

Example 5.9: Calculate the period of revolution 
of a polar satellite orbiting close to the surface 
of the Earth. Given R = 6400 km, g = 9.8 m/s2.

Solution : h is negligible as satellite is close to 
the Earth surface. 

 ... R + h ≈ R 

     g
h 
≈ g

 R = 6400 km = 6.4×106 m.

T = 2
R

g
�

   = 2
6.4 10

9.8

   = 5.075 10 second

   = 85 minut

6

3

�
�

�

3 14.

ee (approximately)

Example 5.10: An artificial satellite revolves 
around a planet in circular orbit close to its 
surface. Obtain the formula for period of the 
satellite in terms of density ρ and radius R of 
planet.

Solution : Period of satellite is given by,

T = 2
(R +h)

GM
π

3

   
--- (1)

Here, the satellite revolves close to the 
surface of planet, hence h is negligible, hence 
R + h   R

 

density ( ) =
mass ( )

volume ( )
 

                   =  

�

�

M

V

M V�     --- (2)

As planet is spherical in shape, volume of 
planet is given as 

V R

M R

=   

  =  

                       

3

3

4

3
4

3

�

� ��
      

--- (3)

Substituting the values form eq. (2) and (3) 
in Eq. (1), we get

 

T
R

G R

T
G

= 2
  

  

  = 
3

3

3

�
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�

4
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5.8.4 Binding Energy of an orbiting satellite:
The minimum energy required by a satellite 

to escape from Earth’s gravitational influence is 
the binding energy of the satellite.
Expression for Binding Energy of satellite 
revolving in circular orbit round the Earth

Consider a satellite of mass m revolving 
at height h above the surface of the Earth in a 
circular orbit. It possesses potential energy as 
well as kinetic energy. Let M be the mass of the 
Earth, R be the Radius of the Earth, v

c
 be critical 

velocity of satellite, r = (R+h) be the radius of 
the orbit.

∴Kinetic energy of satellite

 

=

=

1

2
1

2

m

GMm

r

v

 

c
2

    --- (5.39)
The gravitational potential at a distance r 

from the centre of the Earth is -
GM

r
... Potential energy of satellite = Gravitational 
potential × mass of satellite

 
= -

GMm

r     
--- (5.40)

The total energy of satellite is given as
 T.E. = K.E. + P.E.
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=
GMm

r
-

GMm

r

= -
GMm

r

1

2
1

2    
--- (5.41)

Total energy of a circularly orbiting 
satellite is negative. Negative sign indicates 
that the satellite is bound to the Earth, due 
to gravitational force of attraction. For the  
satellite to be free from the Earth’s gravitational 

hyperphysics.phy-astr.gsu.edu/hbase/grav.
html#grav

Internet my friend

influence its total energy should become non-
negative (zero or positive). Hence the minimum 
energy to be supplied to unbind the satellite  

is +
1

2

GMm

r
  This is the binding energy of a 

satellite.

Exercises Exercises

1. Choose the correct option.

 i)  The value of acceleration due to gravity is 
maximum at 

   (A) the equator of the Earth .

   (B) the centre of the Earth. 

   (C) the pole of the Earth.

   (D) slightly above the surface of the 

                  Earth.

 ii)  The weight of a particle at the centre of the 
Earth is 

   (A) infinite.

   (B) zero.

   (C) same as that at other places.

   (D) greater than at the poles.

 iii)  The gravitational potential due to the Earth 
is minimum at 

   (A) the centre of the Earth.

   (B) the surface of the Earth.

   (C) a points inside the Earth but not at 

          its centre.

   (D) infinite distance.

 iv)  The binding energy of a satellite revolving 
around planet in a circular orbit is 3×109 J. 
Its kinetic energy is 

   (A) 6×109J

   (B) -3 ×109J

   (C) -6 ×10+9J

   (D) 3 ×10+9J

2. Answer the following questions.  

 i) State Kepler’s law equal of area.

 ii)  State Kepler’s law of period.

 iii)  What are the dimensions of the universal 
gravitational constant?

 iv)  Define binding energy of a satellite. 

 v)  What do you mean by geostationary 
satellite?

 vi)  State Newton’s law of gravitation.

 vii)  Define escape velocity of a satellite.

 viii)  What is the variation in acceleration due 
to gravity with altitude?

 ix)  On which factors does the escape speed 
of a body from the surface of Earth 
depend?

 x)  As we go from one planet to another 
planet, how will the mass and weight of 
a body change?

 xi)  What is periodic time of a geostationary 
satellite?

 xii)  State Newton’s law of gravitation and 
express it in vector form.

 xiii)  What do you mean by gravitational 
constant? State its SI units. 

 xiv)  Why is a minimum two stage rocket 
necessary for launching of a satellite?

 xv)  State the conditions for various possible 
orbits of a satellite depending upon the 
tangential speed of projection.
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2. Answer the following questions in 
detail. 

 i) Derive an expression for critical velocity 
of a satellite.

 ii)  State any four applications of a 
communication satellite.

 iii)  Show that acceleration due to gravity 
at height h above the Earth’s surface is 

g g
R

R hh � �
�
�
�

�
�
�

2

 iv)  Draw a labelled diagram to show different 
trajectories of a satellite depending upon 
the tangential  projection speed.

 v)  Derive an expression for binding energy 
of a body at rest on the Earth’s surface.

 vi)  Why do astronauts in an orbiting satellite 
have a feeling of weightlessness?

 vii)  Draw a graph showing the variation 
of gravitational acceleration due to 
the depth and altitude from the Earth’s 
surface.

 viii) At which place on the Earth’s surface  
is the gravitational acceleration 
maximum? Why?

 ix)  At which place on the Earth surface the 
gravitational acceleration minimum? 
Why?

 x)  Define the binding energy of a satellite. 
Obtain an expression for binding energy 
of a satellite revolving around the Earth 
at certain attitude.

 xi)  Obtain the formula for acceleration due 
to gravity at the depth ‘d’ below the 
Earth’s surface.

 xii)   State Kepler’s three laws of planetary 
motion.

 xiii)   State the formula for acceleration due 

to gravity at depth ‘d’ and altitude ‘h’ 

Hence show that their ratio is equal to 
R d

R h

�
�

�
�
�

�
�
�2

  by assuming that the altitude 

is very small as compared to the radius 
of the Earth.

 xiv)  What is critical velocity? Obtain an 
expression for critical velocity of an 
orbiting satellite. On what factors does it 
depend?

 xv)   Define escape speed. Derive an 
expression for the escape speed of an 
object from the surface of the each. 

  xvi) Describe how an artificial satellite using 
two stage rocket is launched in an orbit 
around the Earth.

4. Solve the following problems.  

 i)  At what distance below the surface of 
the Earth, the acceleration due to gravity 
decreases by 10% of its value at the 
surface, given radius of Earth is 6400 
km. 

          [Ans: 640 km].

 ii)  If the Earth were made of wood, the mass 
of wooden Earth would have been 10% 
as much as it is now (without change in 
its diameter). Calculate escape speed 
from the surface of this Earth.   
    [Ans: 3.54 km/s]

 iii)  Calculate the kinetic energy, potential 
energy, total energy and binding energy 
of an artificial satellite of mass 2000 kg 
orbiting at a height of 3600 km above the 
surface of the Earth.

  Given:-  G = 6.67×10-11 Nm2/kg2

    R = 6400 km

    M = 6×1024 kg

    [Ans: KE = 40.02×109J, 

             PE = -80.09 ×109J,

     TE = 40.02 ×109J,   
   BE = 40.02×109J]

 iv)  Two satellites A and B are revolving 
around a planet. Their periods of 
revolution are 1 hour and 8 hours 
respectively. The radius of orbit of 
satellite B is 4×104 km. find radius of 
orbit of satellite A .    
                            [Ans: 1×104 km]
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 v)  Find the gravitational force between the 
Sun and the Earth. 

  Given Mass of the Sun = 1.99×1030 kg

  Mass of the Earth = 5.98×1024 kg

  The average distance between the Earth 
and the Sun = 1.5×1011 m.   
               [Ans: 3.5×1022 N] 

 vi)  Calculate the acceleration due to gravity 
at a height of 300 km from the surface of 
the Earth. (M = 5.98 ×1024 kg, R = 6400 
km).    

                [Ans :- 8.889 m/s2] 

 vii)  Calculate the speed of a satellite in an 
orbit at a height of 1000 km from the 
Earth’s surface. M

E
= 5.98×1024 kg, R = 

6.4×106 m.  

           [Ans : 7.34 ×103 m/s]

 viii)  Calculate the value of acceleration due 
to gravity on the surface of Mars if the 
radius of Mars = 3.4×103 km and its 
mass is 6.4×1023 kg.     
                [Ans : 3.69 m/s2]

 ix)  A planet has mass 6.4 ×1024 kg and radius 
3.4×106 m. Calculate energy required to 
remove on object of mass 800 kg from 
the surface of the planet to infinity.  
             [Ans : 5.02 ×1010J]

 x)  Calculate the value of the universal 
gravitational constant from the given 
data. Mass of  the Earth = 6×1024 kg, 
Radius of the Earth  = 6400 km and the 
acceleration due to gravity on the surface 
= 9.8 m/s2   

                               [Ans : 6.69×10-11 N m2/kg2 ]

 xi) A body weighs 5.6 kg wt on the surface 
of the Earth. How much will be its 
weight on a planet whose mass is 7 times 
the mass of the Earth and radius twice 
that of the Earth’s radius.    
    [Ans: 9.8 kg-wt]

 xii). What is the gravitational potential due to 
the Earth at a point which is at a height 
of 2R

E
 above the surface of the Earth, 

Mass of the Earth is 6×1024 kg, radius of 
the Earth = 6400 km and G = 6.67×10-11 
Nm2 kg-2. 

                  [Ans: 2.08×107 J]

***
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6.1 Introduction:
Solids are made up of atoms or a group 

of atoms placed in a definite geometric 
arrangement. This arrangement is decided by 
nature so that the resultant force acting on each 
constituent due to others is zero. This is the 
equilibrium state of a solid at room temperature. 
The given equilibrium arrangement does not 
change with time. It can change only when an 
external stimulus, like compressive force from 
all sides, is applied to a solid. The constituents 
vibrate about their equilibrium positions even 
at very low temperatures but cannot leave their 
fixed positions. This fact provides the solids 
a definite shape and size (allows the solids to 
maintain a definite shape and size).  

If an external force is applied to a solid the 
constituents are slightly displaced and restoring 
forces are developed in it. These restoring 
forces try to bring the constituents back to 
their equilibrium positions so that the solid can 
regain its shape. When the deforming forces are 
removed, the interatomic forces tend to restore 
the original positions of the molecules and thus 
the body regains its original shape and size. 
However, as we will see later, this is possible 
only within certain limits.

The form of a body is decided by its size 
and shape, e.g., a tennis ball and a football 
both are spherical, i.e., they have the same 
shape. But a tennis ball is smaller in size than 
a football. When a force is applied to a solid 
(which is not free to move), the size or shape 
or both change due to changes in the relative 
positions of molecules. Such a force is called 
deforming force.

The change in shape or size or both 
of a body due to an external force is called 
deformation.

The larger the deforming force on a body, 

 1.  Can you name a few objects which change their shape and size on application of a force 
and regain their original shape and size when the force is removed ?

 2.  Can you name objects which do not regain their original shape and size when the external 
force is removed?   

Can you recall?

the larger is its deformation. Deformation 
could be in the form of change in length of a 
wire, change in volume of an object or change 
in shape of a body.

We know that when a deforming force 
(e.g. stretching) is applied to a rubber band, it 
gets deformed (elongated) but when the force 
is removed, it regains its original length. When 
a similar force is applied to a dough, or clay 
it also gets deformed but it does not regain its 
original shape and size after removal of the 
deforming force. These observations indicate 
that rubber and clay are different in nature.  
The property that decides this nature is called 
elasticity/plasticity. We will learn more about 
these properties of solids in this  Chapter . 
6.2 Elastic Behavior of Solids:

If a body regains its original shape and 
size after removal of the deforming force, it 
is called an elastic body and the property is 
called elasticity. Here the restoring forces are 
strong enough to bring the displaced molecules 
to their original positions. Examples of elastic 
materials are metals, rubber, quartz, etc.

If a body regains its original shape and 
size completely and instantaneously upon 
removal of the deforming force, then it is said 
to be  perfectly elastic.

If a body does not regain its original 
shape and size and retains its altered shape 
or size upon removal of the deforming force, 
it is called a plastic body and the property is 
called plasticity. Here, the restoring forces are 
not strong enough to bring the molecules back 
to their original positions. Examples of plastic 
materials are clay, putty, plasticine, thick mud, 
etc. There is no solid which is perfectly elastic 
or perfectly plastic. The best example of a near 
ideal elastic solid is quartz fibre and that of a 
plastic body is putty.

Mechanical Properties of Solids6.
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6.3 Stress and Strain:
The elastic properties of a body are 

described in terms of stress and strain. When 
a body gets deformed under an applied force, 
restoring forces are set up internally. They 
oppose change in shape or size of the body. 
When body is in equilibrium in its altered shape 
or size, deforming force and restoring force are 
equal and opposite.
The internal restoring force per unit area of 
a body is called stress.

   
--- (6.1)

where F
��

 is internal restoring force (external 
applied deforming force). SI unit of stress is  
N m-2 or pascal (Pa). The dimensions of a stress 
are [ L-1 M1 T-2 ].

Strain is a measure of the deformation of a 
body. When two equal and opposite forces are 
applied to an elastic body, there is a change in 
the dimensions of the body, Strain is defined 
as the ratio of change in dimensions of the 
body to its original dimensions.

  
--- (6.2)

It is the ratio of two similar quantities. 
Hence strain is a dimensionless physical 
quantity. It has no units. There are three types 
of stress and corresponding strains.
1: Stress produced by a deforming force acting 
along the length of a body or a rod is called 
tensile stress or a longitudinal stress. The 
strain produced is called tensile strain.
A) Tensile stress or compressive stress:

Suppose a force F
��

 is applied along the 
length of a wire, or perpendicular to its cross 
section A. This produces an elongation in 
the wire and the length of the wire increases 
accordingly, as shown in Fig. 6.1 (a).

 Tensile stress = | |F
��

A
   --- (6.3)

When a rod is pushed at two ends with equal 
and opposite forces, its length decreases. 
The restoring force per unit area is called 
compressive stress as shown in Fig. 6.1 (b).

 Compressive stress 
| |F
��

A

     
--- (6.4)

 
Fig. 6.1 (a): Tensile stress.

Fig. 6.1 (b): Compressive stress.
B) Tensile strain:

The strain produced by a tensile deforming 
force is called tensile strain or longitudinal 
strain or linear strain.

If L is the original length and ∆l is the 
change in length due to the deforming force, 
then 

               
--- (6.5)

2 : When a deforming force acting on a body 
produces change in its volume, the stress is 
called volume stress and the strain produced is 
called volume strain.
A) Volume stress or hydraulic stress:

Let F
��

 be a force acting perpendicular to 
the entire surface of the body. It acts normally 
and uniformly all over the surface area A of the 
body.  Such a stress which produces change in 
size but no change in shape is called volume 
stress.

     
--- (6.6)

Volume stress produces change in size 
without change in shape of body, it is called 
hydraulic or hydrostatic volume stress as shown 
in Fig. 6.2.
B) Volume strain:

A deforming force acting perpendicular to 
the entire surface of a body produces a volume 
strain. Let V be the original volume and ∆V be 
the change in volume due to deforming force, 
then

    
--- (6.7)
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Fig. 6.2 : Volume stress. 

tangential force. Tangential force is parallel to 
the top and the bottom surface of the block. 
The restoring force per unit area developed 
due to the applied tangential force is called 
shearing stress or tangential stress.
B) Shearing strain:

There is a  relative displacement, ∆l, of the 
bottom face and the top face of the cube. Such 
relative displacement of two surfaces is called 
shear strain. It can be calculated as follows,

Shearing strain 
∆l

l
 = tan θ = θ   --- (6.9)

when the relative displacement ∆l is very small.
6.4 Hooke’s Law:

Robert Hooke (1635-1703), an English 
physicist, studied the tension in a wire and 
strain produced in it. His study led to a law now 
known as Hooke’s law.
Statement: Within elastic limit, stress is 
directly proportional to strain.

 

Stress

Strain
constant=

The constant is called the modulus 
of elasticity. The modulus of elasticity 
of a material is the ratio of stress to the 
corresponding strain. It is defined as the 
slope of the stress-strain curve in the elastic 
deforming region and depends on the nature of 
the material.  The maximum value of stress up 
to which stress is directly proportional to strain 
is called the elastic limit. The stress-strain 
curve within elastic limit is shown in Fig. 6.4

Fig 6.4:  Stress versus strain graph within 
elastic limit for an elastic body.

6.5 Elastic modulus:
There are three types of stress and strain 

related to change in length, change in volume 
and change in shape. Hence, we have three 
moduli of elasticity corresponding to each type 

When a balloon is filled with air at high 
pressure, its walls experience a force from 
within. This is also volume stress. It tries 
to expand the balloon and change its size 
without changing shape. When the volume 
stress exceeds the limit of bulk elasticity, the 
balloon explodes. Similarly, a gas cylinder 
explodes when the pressure inside it exceeds 
the limit of bulk elasticity of its material. 

A submarine when submerged under 
water is under volume stress.   

Do you know ?

3 : When a deforming force acting on a body 
produces change in the shape of a  body, shearing 
stress and shearing strain are produced.
A) Shearing stress:

Let F
��

 be a tangential force acting on a 
surface area A. This force produces change in 
shape of the body without changing its size as 
shown in Fig. 6.3. 

--- (6.8)

D

Fig. 6.3 : Tangential force produces 
shearing stress. 

Suppose ABCD is the front face of a cube. 
A force F

��
 is applied to the cube so that the 

bottom of the cube is fixed and only the top 
surface is slightly displaced. Such force is called 
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of stress and strain.
6.5.1 Young’s modulus (Y):

It is the modulus of elasticity related to 
change in length of an object like a metal 
wire, rod, beam, etc., due to the applied 
deforming force. Hence it is also called as 
elasticity of length. It is named after the British 
physicist Thomas Young (1773-1829). 

Consider a metal wire of length L having 
radius r suspended from a rigid support. A load 
Mg is attached to the free end of the wire. Due 
to this, deforming force is applied at the free 
end of the wire in downward direction. In its 
equilibrium position,

  
Longitudinal stress

Applied force

Area
 

 
=

            
=

F

A

            
�

Mg

r� 2
  

--- (6.10)

It produces a change in length of the wire. If 
(L+l) is the new length of wire, then l is the 
extension or elongation in wire.

Longitudinal strain
changeinlength

original length
 

   

 
 =
 

   
=  

l

L   
- -- (6.11)

Young’s modulus is the ratio of longitudinal 
stress to longitudinal strain.

Young s modulus
longitudinal stress

longitudinal strain
� �   

 

   
-- (6.12)

      

  
Y

MgL

r l
��
� 2

            
---(6.13)

 
SI unit of Young’s modulus is  N/m2. Its 

dimensions are [ L-1 M1 T-2 ].
Young’s modulus indicates the 

resistance of an elastic solid to elongation or 
compression. Young’s modulus of a material is 
useful for characterization of an object subjected 
to compression or tension. Young's modulus is 
the property of solids only.

Table 6.1: Young's modulus of some 
familiar materials 

Material Young's modulus Y 
×1010 Pa (N/m2)

Lead
Glass (crown)

Aluminium
Silver
Gold
Brass

Copper
Steel

1.5
6.0
7.0
7.6
8.1 
9.0
11.0
21.0

Example 6.1: A brass wire of length 4.5m with 
crosssectional area of 3×10-5 m2 and a copper 
wire of length 5.0 m with cross sectional area 
4×10-5 m2 are stretched by the same load. The 
same elongation is produced in both the wires.  

Find the ratio of Young’s modulus of brass and 
copper.
Solution: For brass, 

L
B
= 4.5m, A

B
= 3×10-5 m2 

l
B
= l, F

B
= F

� �
�

� ��Y
F

lB

4 5

3 10 5

.

For copper, 
L

C
= 5m, A

C
= 4×10-5 m2 

l
C
= l, F

C
=F

� �
�

� ��Y
F

c

5 0

4 10 5

.

l
Y

Y

F

F
B

C

�
�

� �
�

� �
�

�
�
�

�

�

�

�

�

�
.

.

4 5

3 10

4 10

5

18 10

15 10
1 2

5

5

5

5

l

l

      
 

Example 6.2: A wire of length 20 m and area 
of cross section 1.25×10-4  m2 is subjected to a 
load of 2.5 kg. (1 kgwt = 9.8 N). The elongation 
produced in wire is 1×10-4 m. Calculate Young’s 
modulus of the material.
Solution: Given, 

L = 20 m 
A = 1.25 ×10-4 m2
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F = mg = 2.5 × 9.8N  
L = 10-4 m

To find: Y 

 
Y

FL

Al
= �

. � . �

.
�

� �
� �� �

2 5 9 8 20

1 25 10 104 4� �

     = 3.92 × 1010 N m-2

6.5.2 Bulk modulus (K):
It is the modulus of elasticity related to 

change in volume of an object due to applied 
deforming force. Hence it is also called as 
elasticity of volume. Bulk modulus of elasticity 
is a property of solids, liquids and gases.

If a sphere made from rubber is completely 
immersed in a liquid, it will be uniformly 
compressed from all sides. Suppose this 
compressive force is F. Let the change in 
pressure on the sphere be dP and let the change 
in its volume be dV. If the original volume of 
the sphere is V, then volume strain is defined as  

  
�� 

dV

V        
--- (6.14)

The negative sign indicates that there is a 
decrease in volume. The magnitude of the 

volume strain is 
dV

V
 

Bulk modulus is defined as the ratio of 
volume stress to volume strain.

K
dP
dV
V

V
dP

dV
�
�
�
�

�
�
�

�       --- (6.17)

SI unit of bulk modulus is N/m2. Dimensions of 
K are [ L-1 M1 T-2 ].

Table 6.2 gives bulk moduli of some 
familiar materials

Bulk modulus measures the resistance 
offered by gases, liquids or solids while an 
attempt is made to change their volume.

The reciprocal of bulk modulus of elasticity 
is called compressibility of the material. 

        
--- (6.18)

Compressibility is the fractional decrease 
in volume, -∆V/V  per unit increase in pressure. 
SI unit of compressibility is m2/ N or Pa-1 and its 
dimensions are [ L1 M-1 T2].

The bulk modules of water is 2.18×108 Pa 
and its compressibility is 45.8×10-10 Pa-1. 
Materials with small bulk modulus and large 
compressibility are easier to compress.

Do you know ?

Example 6.3: A metal cube of side 1m is 
subjected to a force. The force acts normally 
on the whole surface of cube and its volume 
changes by 1.5×10-5 m3. The bulk modulus of 
metal is 6.6×1010 N/m2. Calculate the change in 
pressure.
Solution: Given, 
volume of cube=V = l3 = (1)3 =1m3

Change in volume = dV = 1.5×10-5 m3

Bulk modulus = K = 6.6×1010 N/m2.
To find: Change in pressure dP 

   
K V

dP

dV
=

   
dP K

dV

V
=

   

dP �
� � � �6 6 10 1 5 10

1

10 5. . �

dP = 9.9×105 N/m2.

Table 6.2: Bulk modulus of some familiar 
materials 

Material Bulk  modulus K 
×1010  Pa (N/m2)

Lead
Brass

Glass (crown)
Aluminium

Silver
Copper
Steel
Gold

4.1
6.0
6.0
7.5
10.0
14.0
16.0
18.0

6.5.3 Modulus of rigidity (η):
The modulus of elasticity related to 

change in shape of an object is called rigidity 
modulus. It is the property of solids only as 
they alone possess a definite shape.
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The block shown in Fig. 6.5 is made of 
a uniform isotropic material. It has a uniform 
crosssection area A and height l. A cross section 
of the block is defined as any plane parallel 
to the top and the bottom surface and cuts the 
block. Two forces of magnitude 'F' are applied 
along top and bottom surface as shown in Fig. 
(6.5). They constitute a couple. The upper 
surface is displaced relative to the lower surface 
by a small distance ∆l and corresponding angles 
change by a small amount θ = ∆l/l.  

Fig. 6.5: Modulus of rigidity, tangential 
force F and shear strin θ. 

A couple is applied by pushing the top 
and the bottom surfaces as shown in Fig. 6.5. 
Similar couple would be applied if the bottom 
of the block is fixed and only the top is pushed.

The forces F
��

 and - F
��

 are parallel to the 
cross section. This is different than the tensile 
stress where the force is normal to the cross 
section. 

As a result of the way in which the forces 
are applied the block is subjected to a shear 
stress defined by shear stress = F/A.

The SI unit of shear stress is N/m2 or Pa. 
The block is distorted as a result of the shear 
stress. The top and bottom surface are relatively 
displaced by a small  distance ∆l. The corner 
angle changes by a small amount θ which is 
called shear strain and is expressed in radian. 
Shear strain 'θ' is given by θ = ∆l/l, (for small 
∆l). 
Shear modulus or modulus of rigidity: It is 
defined as the ratio of shear stress to shear strain 
within elastic limits.

  �
� �

=
shear stress

shear strain
� �

F A F

A

/
  --- (6.17)

 
 Table 6.3 gives values of rigidity 
modulus η of some familiar materials.

Table 6.3: Rigidity modulus η of some 
familiar materials 

Material Rigidity modulus η 
×1010  Pa (N/m2)

Lead
Aluminium

Glass (crown)
Silver
Gold
Brass

Copper
Steel

0.6
2.5
2.5
2.7
2.9
3.5
4.4
8.3

Rigidity modulus indicates the resistance 
offered by a solid to change in its shape.
Example 6.4: Calculate the modulus of rigidity 
of a metal, if a metal cube of side 40 cm is 
subjected to a shearing force of 2000 N. The 
upper surface is displaced through 0.5cm with 
respect to the bottom. Calculate the modulus of 
rigidity of the metal.
Solution: Given,
Length of side of cube = l= 40 cm = 0.40 m 
     Shearing force = F= 2000 N = 2×103 N
Displacement of top face = ∆l = 0.5cm = 0.005m
Area = A = l 2 = 0.16m2 

To find: modulus of rigidity, η 

  

�
�

�

�

��

�
�

� �

�
�
�

�

�
.

.
.

F

A
l

l

0 005

0 40
0 0125

2.0 10 N

(0.16m ) (0.0125)

 

3

2

   = 1.0 10 N / m6 2�

6.5.4 Poisson’s ratio:
Suppose a wire is fixed at one end and a 

force is applied at its free end so that the wire 
gets stretched. Length of the wire increases and 
at the same time, its diameter decreases, i.e., the 
wire becomes longer and thinner as shown in 
Fig. 6.6 (a).

Fig. 6.6 (a): When a wire is stretched its 
length increases and its diameter decreases.
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For most of the commonly used metals, 
the value of σ is between 0.25 and 0.35. 
Many times we assume that volume is 
constant while stretching a wire. However, 
in reality, its volume also increases. Using 
approximations it can be shown that σ

max
 ≈ 

0.5 if volume is unchanged. In practice, it 
is much less. This shows that volume also 
increases while stretching. 

Do you know ?

Fig. 6.6 (b): When a wire is compressed its 
length increases and its diameter increases.

If equal and opposite forces are applied to 
an object along its length inwards, the object gets 
compressed (Fig. 6.6 (b)). There is a decrease 
in dimensions along its length and at the same 
time there is an increase in its dimensions 
perpendicular to its length. When length of the 
wire decreases, its diameter increases.

The ratio of change in dimensions to 
original dimensions in the direction of the 
applied force is called linear strain while 
the ratio of change in dimensions to original 
dimensions in a direction perpendicular to the 
applied force is called lateral strain. Within 
elastic limit, the ratio of lateral strain to the 
linear strain is called the Poisson’s ratio. 

If l is the original length of wire, ∆l is 
increase/decrease in length of wire, D is the 
original diameter and d is corresponding change 
in diameter of wire then, Poisson’s ratio is given 
by
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--- (6.18)

Poisson’s ratio has no unit. It is dimensionless.
Table 6.4 gives values of Poisson ratio, σ, of 
some familiar materials.  

Table 6.4: Poisson ratio, σ, of some familiar 
materials 

Material Poisson ratio σ
Glass (crown)

Steel

Aluminium 
Brass

Copper

Silver

Gold

0.2

0.28

0.36

0.37

0.37

0.38

0.42

 6.6 Stress-Strain Curve:
Suppose a metal wire is suspended 

vertically from a rigid support and stretched 
by applying load to its lower end. The load is 
gradually increased in small steps until the wire 
breaks. The elongation produced in the wire is 
measured during each step. Stress and strain 
is noted for each load and a graph is drawn by 
taking tensile strain along x-axis and tensile 
stress along y-axis. It is a stress-strain curve as 
shown in Fig. 6.7.

Fig. 6.7 : stress-strain curve.
The initial part of the graph is a straight 

line OA. This is the region in which Hooke's 
law is obeyed and stress is directly proportional 
to strain. The straight line portion ends at A. 
The stress at this point is called proportional 
limit. If the load is further increased till point 
B is reached, stress and strain are no longer 
proportional and Hooke's law is not valid. If the 
load is gradually removed starting at any point 
between O and B. The curve is retraced until 
the wire regains its original length. The change 
is reversible. The material of the wire shows 
elastic behaviour in the region OB. Point B is 
called the yield point. The corresponding point 
is called the elastic limit. 
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When the stress is increased beyond point 
B, the strain continues to increase. If the load is 
removed at any point beyond B, C for example, 
the material does not regain its original length. 
It follows the line CE. Length of the wire when 
there is no stress is greater than the original 
length. The deformation is irreversible and the 
material has acquired a permanent set.   

Further increase in load causes a large 
increase in strain for relatively small increase 
in stress, until a point D is reached at which 
fracture takes place.

The material shows plastic flow or plastic 
deformation from point B to point D. The 
material does not regain its original state when 
the stress is removed. The deformation is 
called plastic deformation.   

The curve described above shows all 
the possibilities for an elastic substance. 
In particular, many metallic wires (copper, 
aluminum, silver, etc) exhibit this type of 
behavior. However, majority of materials in 
every day life exhibit only some part of it.

Materials such as glass, ceramics, etc., 
break within the elastic limit. They are called 
brittle.

Metals such as copper, aluminum, wrought 
iron, etc. have large plastic range of extension. 
They lengthen considerably and undergo plastic 
deformation till they break. They are called 
ductile.

Metals such as gold, silver which can be 
hammered into thin sheets are called malleable.

Rubber has large elastic region. It can be 
stretched so that its length becomes many times 
its original length, after removal of the stress it 
returns to its original state but the stress strain 
curve is not a straight line. A material that can 
be elastically stretched to a larger value of strain 
is called an elastomer.

In case of some materials like vulcanized 
rubber, when the stress applied on a body 
decreases to zero, the strain does not return to 
zero immediately. The strain lags behind the 
stress. This lagging of strain behind the stress is 
called elastic hysteresis. Figure 6.8 shows the 
stress-strain curve for increasing and decreasing 
load. It encloses a loop. Area of loop gives 

the energy dissipated during deformation of a 
material. 

 
Fig. 6.8: Stress-stain curve for increasing 
and decreasing load.

Why does a rubber band become loose after 
repeated use?

Can you tell?

6.7 Strain Energy:
The elastic potential energy gained by a 

wire during elongation by a stretching force 
is called as strain energy.

Consider a wire of original length L and 
cross sectional area A stretched by a force F 
acting along its length. The wire gets stretched 
and elongation l is produced in it. The stress and 
the strain increase proportionately. 

Longitudinal stress = 
F

A
 

Longitudinal strain = 
l

L

Young’s modulus = 
longitudinal stress

longitudinal strain
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--- (6.19)

The magnitude of stretching force increases 
from zero to F during elongation of wire. At a 
certain stage, let ‘f ’ be the force applied and ‘x’ 
be the corresponding extension. The force at 
this stage is given by Eq. (6.19) as

 f = 
YAx

L
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For further extension dx in the wire, the work 
done is given by
       Work = (force).(displacement).
        dW = f dx

    ∴ dW = 
YAx

L
dx 

When the wire gets stretched from x = 0 to  
x = l, the total work done is given as
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Work done = 
1

2
� (load).(extension)   --- (6.20)

This work done by stretching force is equal 
to energy gained by the wire. This energy is 
strain energy.

Strain energy = 
1

2
� (load).(extension) --- (6.21)

Strain energy per unit volume can be obtained 
by using Eq. (6.20) and various formula of 
stress, strain and young’s modulus.
Work done per unit volume

  =
work done in streching wire

volume of wire
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Work done per unit volume

 = 
1

2
� (stress).(strain) 

Strain energy per unit volume 

 =
1

2
� (stress).(strain)   --- (6.22)

As Y =
stress

strain ,

Stress = Y. (strain) and 

strain =
stress

Y
∴ Strain energy per unit volume

 � �� � ( )
1

2
2Y strain    --- (6.23)

Also, strain energy per unit volume

     --- (6.24)

Thus Eq. (6.22), (6.23) and (6.24) give strain 
energy per unit volume in various forms.   
6.8 Hardness:

Hardness is the property of a material 
which enables it to resist plastic deformation. 
Hard materials have little ductility and they are 
brittle to some extent. The term hardness also 
refers to stiffness or resistance to bending, 
scratching abrasion or cutting. It is the 
property of a material which gives it the ability 
to resist permanent deformation when a load is 
applied to it. The greater the hardness, greater 
is the resistance to deformation.

The most well-known example of the hard 
materials is diamond. It is incredibly difficult 
to scratch a diamond. Metal with very low 
hardness is aluminium. 

Hardness of material is different from 
its strength and toughness.

If a force is applied to a body it produces 
deformation in it. Higher is the force required 
for deformation, the stronger is the material, 
i.e., the material has more strength.

Steel has high strength whereas plasticine 
clay is not strong because it gets easily deformed 
even by a small force.

Toughness is the ability of a material to 
resist fracturing when a force is applied to it. 
Plasticine clay is relatively tough as it can be 
stretched and deformed due to applied force 
without breaking.
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A single material may be hard, strong and 
tough, e.g.,
 1)  Bulletproof glass is hard and tough but not 

strong.
 2)  Drill bits must be hard, strong and tough 

for their work.
 3)  Anvils are very tough and strong but they 

are not hard.
6.9 Friction in Solids:

Whenever the surface of one body slides 
over another, each body exerts a certain amount 
of force on the other body. These forces are 
tangential to the surfaces. The force on each 
body is opposite to the direction of motion 
between the two bodies. It prevents or opposes 
the relative motion between the two bodies. It is 
a common experience that an object placed on 
any surface does not move easily when a small 
force is applied to it. This is because of certain 
force of opposition acting between the surface of 
the object and the surface on which it is placed. 
Even a rolling ball comes to rest after covering 
a finite distance on playground because of such 
opposing force. Our foot ware is provided 
with designs at the bottom of its sole so as to 
produce force of opposition to avoid slipping. 
It is difficult to walk without such opposing 
force. You know what happens when you try 
to walk fast on polished flooring at home with 
soap water spread on it. There is a possibility of 
slipping due to lack of force of opposition. To 
initiate any motion between a pair of surfaces, 
we need a certain minimum force. Also after the 
motion begins, it is constantly opposed by some 
natural force. This mechanical force between 
two solid surfaces in contact with each other is 
called as frictional force. The property which 
resists the relative motion between two 
surfaces in contact is called friction.   

In some cases it is necessary to avoid 
friction, because friction causes dissipation of 
energy in machines due to which efficiency 
of machines decreases. In such cases friction 
should be reduced by using polished surfaces, 
lubricants, etc. Relative motion between solids 
and fluids (i.e. liquids and gases) is also naturally 
opposed by friction, e.g., a boat on the surface 
of water experiences opposition to its motion. 

In this  section  we are going to study friction in 
solids only.
6.9.1 Origin of friction:

If smooth surfaces are observed under 
powerful microscope, many irregularities and 
projections are observed. Friction arises due 
to interlocking of these irregularities between 
two surfaces in contact.  The surfaces can be 
made extremely smooth by polishing to avoid 
irregularities but it is noticed that in this case 
also, friction does not decrease but may increase. 
Hence the interlocking of irregularities is not 
the real cause of friction.

According to modern theory, cause of 
friction is the force of attraction between 
molecules of two surfaces in actual contact in 
addition to the force due to the interlocking 
between the two surfaces. When one body is in 
contact with another body, the real microscopic 
area in contact is very small due to irregularities 
in contact. Figure 6.9 shows the microscopic 
view of two polished surfaces in contact.

Fig. 6.9: Microscopic view of polished 
surfaces in contact.

 Due to small area,  pressure at points of 
contact is very high. Hence there is a strong force 
of attraction between the surfaces in contact. 
If both the surfaces are of the same material 
the force of attraction is called cohesive force 
while if the surfaces are of different materials 
the force of attraction is called adhesive force. 
When the surfaces in contact become more and 
more smooth, the actual area of contact goes on 
increasing. Due to this, the force of attraction 
between the molecules increases and hence the 
friction also increases. Putting some grease or 
other lubricant (a different material) between 
the two surfaces reduces the friction.    
6.9.2 Types of friction:
1. Static friction: 

Suppose a wooden block is placed on 
a horizontal surface as shown in Fig 6.10. A 
small horizontal force F is applied to it. The 
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block does not move with this force as it cannot 
overcome the frictional force between the block 
and horizontal surface. In this case, the force 
of static friction is equal to F and balances it. 
The frictional force which balances applied 
force when the body is static  is called force 
of static friction, F

s
. In other words, static 

friction prevents sliding motion. 
If we keep increasing F, a stage will come 

when, for F = F
max

, the object will start moving. 
For F < F

max
, the force of static friction is equal 

to F.  For F ≥ F
max

, the kinetic friction comes 
into play.  Static friction opposes impending 
motion i.e. the motion that would take place 
in absence of frictional force under the applied 
force. 

Fig. 6.10: Static friction.
The force of static friction is self adjusting 

force. When the applied force F is very small, the 
block remains at rest. Here the force of friction 
is also small. When F is increased by a small 
value, the block remains still at rest as the force 
of friction is increased to balance the applied 
force. If applied force is increased, the friction 
also increases and reaches the maximum value.
 Just before the body starts sliding over another 
body, the value of frictional force is maximum, 
it is called limiting force of friction, F

L 
. If 

the direction of applied force is reversed, the 
direction of static friction is also reversed, i.e., 
it adjusts its direction also.  
Laws of static friction:
 1]  The limiting force of static friction is 

directly proportional to the normal reaction 
(N) between the two surfaces in contact. 

  
         

F
L
 ∝ N

         ... F
L
 = µ

s
 N   --- (6.25)

  Where µ
s
 is constant of proportionality. It 

is called as coefficient of static friction. 

      
� �µ

F
s

L

N    
--- (6.26)

  The coefficient of static friction is defined 
as the ratio of limiting force of friction 

to the normal reaction. Table 6.4 gives 
the coefficient of static fiction for some 
materials. 

 2]  The limiting force of friction is independent 
of the apparent area between the surfaces 
in contact, so long as the normal reaction 
remains the same.

 3]  The limiting force of friction depends upon 
materials in contact and the nature of their 
surfaces.

Table 6.4: Coefficient of static friction 

Material Coefficient of 
static friction µ

s

Teflon on Teflon

Brass on steel

Copper on steel

Aluminium on steel

Steel on steel

Glass on glass

Rubber on concrete (dry)

0.4

0.51

0.53

0.61

0.74

0.94

1.0

Example 6.5: The coefficient of static friction 
between a block of mass 0.25 kg and a horizontal 
surface is 0.4. Find the horizontal force applied 
to it.

Solution: Given,
  µ

s
 = 0.4

            m = 0.25 kg 
To find: Force 

  F = µ
s
. N = µ

s
. (mg)

  F = 0.4 × 0.25 × 9.8

  F = 0.98 N
2. Kinetic friction :

Once the sliding of block on the surface 
starts, the force of friction decreases. The force 
required to keep the body sliding steadily is 
thus less than the force required to just start its 
sliding. The force of friction that comes into 
play when a body is in steady state of motion 
over another surface is called force of kinetic 
friction.

Friction between two surfaces in contact 
when one body is actually sliding over the 
other body, is called kinetic friction or 
dynamic friction.
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Laws of kinetic friction :
 1. The force of kinetic friction (F

k
 ) is directly 

proportional to the normal reaction between 
two surfaces in contact.

   ∴ F
k  

α  N

           ∴  F
k  

 =  µ
k  

N    --- (6.27)
  Where µ

k 
is constant of proportionality. It 

is called as coefficient of kinetic friction.
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   --- (6.28)

  The coefficient of kinetic friction is defined 
as the ratio of force of kinetic friction to the 
normal reaction between the two surfaces 
in contact. Table 6.5 gives the co-efficient 
of kinetic friction for some materials. 

 2.  Force of kinetic friction is independent of 
shape and apparent area of the surfaces in 
contact. 

 3.  Force of kinetic friction depends upon 
the nature and material of the surfaces in 
contact.

 4.  The magnitude of the force of kinetic 
friction is independent of the relative 
velocity between the object and the surface 
provided that the relative velocity is neither 
too large nor too small.

Table 6.5: Coefficient of kinetic friction 

Material Coefficient of 
kinetic friction µ

k

Rubber on concrete (dry)
Glass on glass
Brass on steel
Copper on steel
Aluminium on steel
Steel on steel
Teflon on Teflon

0.25
0.40
0.40
0.44
0.47
0.57
0.80

3 Rolling friction :
Motion of a body over a surface is said to be 

rolling motion if the point of contact of the body 
with the surface keeps changing continuously.

Friction between two bodies in contact 
when one body is rolling over the other, is 
called rolling friction.

For same pair of surfaces, the force of 
static friction is greater than the force of kinetic 

friction while the force of kinetic friction is 
greater than force of rolling friction. As rolling 
friction is the minimum, ball bearings are 
used to reduce friction in parts of machines to 
increase its efficiency.

Advantages of friction:
Friction is necessary in our daily life. 

• We can walk due to friction between 
ground and feet. 

• We can hold object in hand due to static 
friction.

• Brakes of vehicles work due to friction; 
hence we can reduce speed or stop 
vehicles.

• Climbing on a tree is possible due to 
friction.

Disadvantages of friction
• Friction opposes motion.
• Friction produces heat in different parts 

of machines. It also produces noise.
• Automobile engines consume more fuel 

due to friction.

Methods of reducing friction
• Use of lubricants, oil and grease in 

different parts of a machine.
• Use of ball bearings converts kinetic 

friction into rolling friction.

 1)  It is difficult to run fast on sand.
 2)  It is easy to roll than pull a barrel 

along a road.
 3)  An inflated tyre rolls easily than a 

flat tyre.
 4)  Friction is a necessary evil.

Can you tell?

 1. https://opentextbc.ca>chapter>friction.

 2. https://www.livescience.com

 3. https://www.khanacdemy.org.physics

 4. https://courses.lumenlearning.com>

  elastiscitychapter>elasticity

 5. https://www.toper.com>guides>physics

Internet my friend
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1. Choose the correct answer:

 i)  Change in dimensions is known as…..

  (A) deformation  (B) formation

  (C) contraction   (D) strain.

 ii)  The point on stress-strain curve at which 
strain begins to increase even without 
increase in stress is called….

  (A) elastic point  (B) yield point

  (C) breaking point (D) neck point

 iii)  Strain energy of a stretched wire is  
18×10-3 J and strain energy per unit 
volume of the same wire and same cross 
section is 6×10-3 J/m3. Its volume will 
be....

  (A) 3cm3  (B) 3 m3

  (C) 6 m3   (D) 6 cm3

 iv)  ----- is the property of a material which 
enables it to resist plastic deformation.

  (A) elasticity   (B) plasticity

  (C) hardness  (D) ductility

 v)  The ability of a material to resist fracturing 
when a force is applied to it, is called……

  (A) toughness  (B) hardness

  (C) elasticity  (D) plasticity.

2. Answer in one sentence:

 i)  Define elasticity.

 ii)  What do you mean by deformation?

 iii)  State the SI unit and dimensions of stress.

 iv)  Define strain.

 v)  What is Young’s modulus of a rigid body?

 vi)  Why bridges are unsafe after a very long 
use?

 vii)  How should be a force applied on a body 
to produce shearing stress?

 viii) State the conditions under which Hooke’s 
law holds good.

 ix)  Define Poisson’s ratio.

 x)  What is an elastomer? 

 xi)  What do you mean by elastic hysteresis?

 xii)  State the names of the hardest material 

and the softest material.

 xiii) Define friction.

 xiv)  Why force of static friction is known as 
‘self-adjusting force’?

 xv) Name two factors on which the co-
efficient of friction depends.

3. Answer in short:

 i)  Distinguish between elasticity and 
plasticity.

 ii)  State any four methods to reduce friction.

 iii)  What is rolling friction? How does it 
arise?

 iv)  Explain how lubricants help in reducing 
friction?

 v)  State the laws of static friction.

 vi)  State the laws of kinetic friction.

 vii)  State advantages of friction.

 viii) State disadvantages of friction.

 ix)  What do you mean by a brittle substance? 
Give any two examples.

4. Long answer type questions:

 i)  Distinguish between Young’s modulus, 
bulk modulus and modulus of rigidity.

 ii)  Define stress and strain. What are their 
different types?

 iii)  What is Young’s modulus? Describe an 
experiment to find out Young’s modulus 
of material in the form of a long straight 
wire. 

 iv)  Derive an expression for strain energy per 
unit volume of the material of a wire.

 v)  What is friction? Define coefficient of 
static friction and coefficient of kinetic 
friction. Give the necessary formula for 
each.

 vi)  State Hooke’s law. Draw a labeled graph 
of tensile stress against tensile strain for a 
metal wire up to the breaking point. In this 
graph show the region in which Hooke’s 
law is obeyed.

Exercises Exercises
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5. Answer the following

 i)  Calculate the coefficient of static friction 
for an object of mass 50 kg placed on 
horizontal table pulled by attaching a 
spring balance. The force is increased 
gradually it is observed that the object just 
moves when spring balance shows 50N.            

                 [Ans: µ
s  

= 0.102]

 ii)  A block of mass 37 kg rests on a rough 
horizontal plane having coefficient of 
static friction 0.3. Find out the least 
force required to just move the block 
horizontally.   

               [Ans: F
s
 = 108.8N]

 iii)  A body of mass 37 kg rests on a rough 
horizontal surface. The minimum 
horizontal force required to just start the 
motion is 68.5 N. In order to keep the 
body moving with constant velocity, a 
force of 43 N is needed. What is the value 
of a) coefficient of static friction? and b) 
coefficient of kinetic friction?

          [Ans:   a) µ
s =

 0.188 

            b) µ
k  

= 0.118]

 iv)  A wire gets stretched by 4mm due to a 
certain load. If the same load is applied 
to a wire of same material with half the 
length and double the diameter of the 
first wire. What will be the change in its 
length?

            [Ans: 0.5mm]

 v)  Calculate the work done in stretching a 
steel wire of length 2m and cross sectional 
area 0.0225mm2 when a load of 100 N is 
slowly applied to its free end. [Young’s 
modulus of steel= 2×1011 N/m2 ]

            [Ans: 2.222J]

 vi)  A solid metal sphere of volume 0.31m3 

is dropped in an ocean where water 
pressure is 2×107 N/m2. Calculate change 
in volume of the sphere if bulk modulus 
of the metal is 6.1×1010 N/m2 

           [Ans: 10-4 m3]

 vii)  A wire of mild steel has initial length  
1.5 m and diameter 0.60 mm is extended 
by 6.3 mm when a certain force is applied 
to it. If Young’s modulus of mild steel 
is 2.1 x 1011 N/m2, calculate the force 
applied. 

             [Ans: 250 N]

 viii) A composite wire is prepared by joining 
a tungsten wire and steel wire end to end. 
Both the wires are of the same length 
and the same area of cross section. If this 
composite wire is suspended to a rigid 
support and a force is applied to its free 
end, it gets extended by 3.25mm. Calculate 
the increase in length of tungsten wire and 
steel wire separately.

  [Given:  Y
steel 

= 2 × 1011N/m2,

    Y
Tungsten 

= 3.40 × 108 N/m2]

  [Ans: extension in tungsten wire = 3.244 mm,     

                    extension in steel wire = 0.0052 mm]

 ix) A steel wire having cross sectional area 
1.2 mm2 is stretched by a force of 120 N. 
If a lateral strain of 1.455 mm is produced 
in the wire, calculate the Poisson’s ratio.  

              [Ans: 0.291]

 x) A telephone wire 125m long and 1mm in 
radius is stretched to a length 125.25m 
when a force of 800N is applied. What is 
the value of Young’s modulus for material 
of wire?      
                             [Ans: 1.27×10 11N/m2]

 xi) A rubber band originally 30cm long is 
stretched to a length of 32cm by certain 
load. What is the strain produced?   
             [Ans: 6.667× 10-2 ]

 xii) What is the stress in a wire which is 50m 
long and 0.01cm2 in cross section, if the 
wire bears a load of 100kg?   
          [Ans: 9.8× 108 N/m2]

 xiii) What is the strain in a cable of original 
length 50m whose length increases by 
2.5cm when a load is lifted?

           [Ans: 5× 10-4 ]

***
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7.1 Introduction:

In previous lessons, while describing the 
equilibrium states of a mechanical system 
or while studying the motion of bodies, only 
three fundamental physical quantities namely 
length, mass and time were required. All other 
physical quantities in mechanics or related 
to mechanical properties can be expressed in 
terms of these three fundamental quantities. 
In this chapter, we will discuss properties or 
phenomena related to heat. These require a 
fourth fundamental quantity, the temperature, 
as mentioned in Chapter 1.

The sensation of hot or cold is a matter of 
daily experience. A mother feels the temperature 
of her child by touching its forehead. A cook 
throws few drops of water on a frying pan to 
know if it is hot enough to spread the dosa 
batter. Although not advisable, in our daily 
lives, we feel hotness or coldness of a body by 
touching or we dip our fingers in water to check 
if it is hot enough for taking bath. When we say 
a body or water is hot, we actually mean that its 
temperature is more than our hand. However, 
in this way, we can only compare the hotness 
or coldness of two objects qualitatively. Hot 
and cold are relative terms. You might recall 
the example given in your science textbook of 
VIIIth standard. Lukewarm water seems colder 
than hot water but hotter than cold water to our 
hands. We ascribe a property ‘temperature’ to 
an object to determine its degree of hotness. 
The higher the temperature, the hotter is the 
body. However, the precise temperature of 
a body can be known only when we have 
an accurate and easily reproducible way to 

 1. Temperature of a body determines its 
hotness while heat energy is its heat 
content.

2.  Pressure is the force exerted per unit area 
normally on the walls of a container by the 
gas molecules due to collisions.

Thermal Properties of Matter7. 

quantitatively measure it. Scientific precision 
requires measurement of a physical quantity in 
numerical terms. A thermometer is the device to 
measure the temperature.

In this  chapter , we will learn properties of 
matter and various phenomena that are related 
to heat. Phenomena or properties having to do 
with temperature changes and heat exchanges 
are termed as thermal phenomena or thermal 
properties. You will understand why the 
direction of wind near a sea shore changes 
during day and night, why the metal lid of a 
glass bottle comes out easily on heating and 
why two metal vessels locked together can be 
separated by providing heat to the outer vessel.

7.2 Temperature and Heat:

Heat is energy in transit. When two bodies 
at different temperatures are brought in contact, 
they exchange heat. After some time, the heat 
transfer stops and we say the two bodies are 
in thermal equilibrium. The property or the 
deciding factor to determine the state of thermal 
equilibrium is the temperature of the two bodies. 
Temperature is a physical quantity that defines 
the thermodynamic state of a system.

You might have experienced that a glass of 
ice-cold water when left on a table eventually 
warms up whereas a cup of hot tea on the 
same table cools down. It means that when the 
temperature of a body, ice-cold water or hot 
tea in the above examples, is different from its 
surrounding medium, heat transfer takes place 
between the body and the surrounding medium 
until the body and the surrounding medium 
are at the same temperature. We then say that 
the body and its surroundings have reached 

Can you recall?

 3. Solids, liquids and gases expand on 
heating.

 4. Substances change their state from solid 
to liquid or liquid to gas on heating up to 
specific temperature.   
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a state of thermal equilibrium and there is no 
net transfer of heat from one to the other. In 
fact, whenever two bodies are in contact, there 
is a transfer of heat owing to their temperature 
difference.   

Matter in any state - solid, liquid or gas- 
consists of particles (ions, atoms or molecules). 
In solids, these particles are vibrating about their 
fixed equilibrium positions and possess kinetic 
energy due to motion at the given temperature. 
The particles possess potential energy due to 
the interatomic forces that hold the particles 
together at some mean fixed positions. Solids 
therefore have definite volume and shape. When 
we heat a solid, we provide energy to the solid. 
The particles then vibrate with higher energy 
and we can see that the temperature of the 
solid increases (except near its melting point). 
Thus the energy supplied to the solid (does 
not disappear!) becomes the internal energy in 
the form of increased kinetic energy of atoms/
molecules and raises the temperature of the 
solid. The temperature is therefore a measure 
of the average kinetic energy of the atoms/ 
molecules of the body. The greater the kinetic 
energy is, the faster the molecules will move 
and higher will be the temperature of the body. 
If we continue heating till the solid starts to melt, 
the heat supplied is used to weaken the bonds 
between the constituent particles. The average 
kinetic energy of the constituent particles does 
not change further. The order of magnitude of 
the average distance between the molecules 
of the melt remains almost the same as that of 
solid. Due to weakened bonds  liquids do not 
possess definite shape but have definite volume. 
The mean distance between the particles and 
hence the density of liquid is more or less the 
same as that of the solid. On heating further, 
the atoms/molecules in liquid gain kinetic 
energy and temperature of the liquid increases. 
If we continue heating the liquid further, at the 
boiling point, the constituents can move freely 
overcoming the interatomic/molecular forces 
and the mean distance between the constituents 
increases so that the particles are farther apart. 

As per kinetic theory of gases, for an ideal 
gas, there are no forces between the molecules 

of a gas. Hence gases neither have a definite 
volume nor shape. Interatomic spacing in 
solids is ~ 10-10 m while the average spacing 
in liquids is almost twice that in solids. The 
average inter molecular spacing in gases at 
normal temperature and pressure (NTP) is  
~10-9 m. 

From the above discussion, we understand 
that heat supplied to the substance increases 
the kinetic energy of molecules or atoms of 
the substance. The average kinetic energy 
per particle of a substance defines the 
temperature. Temperature measures the degree 
of hotness of an object and not the amount of its 
thermal energy. 

A glass of water, a gas enclosed in a 
container, a block of copper metal are all 
examples of a 'system'. We can say that heat 
in the form of energy is transferred between 
two (or more) systems or a system and its 
surroundings by virtue of their temperature 
difference. SI unit of heat energy is joule (J) 
and that of temperature is kelvin (K) or celcius 
(°C). The CGS unit of heat energy is erg.  
(1J = 107 erg). The other unit of heat energy, 
that you have learnt in VIIIth standard, is calorie 
(cal) and the relation with J is 1 cal = 4.184 J. 
Heat being energy has dimension [L2M1T-2K°] 
while dimension of temperature is [L°M°T°K1].

7.3 Measurement of Temperature:

In order to isolate two liquids or gases from 
each other and from the surroundings, we use 
containers and partitions made of materials like 
wood, plastic, glass wool, etc. An ideal wall or 
partition (not available in practice) separating 
two systems is one that does not allow any flow 
or exchange of heat energy from one system to 
the other. Such a perfect thermal insulator is 
called an adiabatic wall and is generally shown 
as a thick cross-shaded (slanting lines) region. 
When we wish to allow exchange of heat energy 
between two systems, we use a partition like a 
thin sheet of copper. It is termed as a diathermic 
wall and is represented as a thin dark region.

Let us consider two sections of a container 
separated by an adiabatic wall. Let them contain 
two different gases. Let us call them system A 
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and system B. We independently bring systems 
A and B in thermal equilibrium with a system C. 
Now if we remove the adiabatic wall separating 
systems A and B, there will be no transfer of 
heat from system A to system B or vice versa. 
This indicates that systems A and B are also 
in thermal equilibrium. Overall conclusion of 
this activity can be summarized as follows: 
If systems A and B are separately in thermal 
equilibrium with a system C, then A and B are 
also mutually in thermal equilibrium. When 
two or more systems/ bodies are in thermal 
equilibrium, their temperatures are same. This 
principle is used to measure the temperature of 
a system by using a thermometer.

Do you know ?

If T
A
 = T

B
 and T

B
 = T

C
, then T

A
 = T

C
 is not 

a mathematical statement, if T
X
 represents the 

temperature of system X. It is the zeroth law 
of thermodynamics and makes the science of 
Thermometry possible.

Do you remember that to know the 
temperature of our body, doctor brings the 
mercury in the thermometer down to indicate 
some low temperature. We are then asked to 
keep the thermometer in our mouth. We have 
to wait for some time before the thermometer is 
taken out to know the temperature of our body. 
There is transfer of heat energy from our body 
to the thermometer since initially our body is 
at a higher temperature. When the temperature 
on the thermometer is same as that of our body, 
thermal equilibrium is said to be attained and 
heat transfer stops.  

As mentioned above, to precisely know 
the thermodynamic state of any system, we 
need to know its temperature. The device used 
to measure temperature is a thermometer. 
Thermometry is the science of temperature 
and its measurement. For measurement of 
temperature, we need to establish a temperature 
scale and adopt a set of rules for assigning 
numbers (with corresponding units).

For the calibration of a thermometer, 
a standard temperature interval is selected 
between two easily reproducible fixed 

temperatures just as we select the standard 
of length (metre) to be the distance between 
two fixed marks. The fact that substances 
change state from solid to liquid to gas at 
fixed temperatures is used to define reference 
temperature called fixed point. The two fixed 
temperatures selected for this purpose are the 
melting point of ice or freezing point of water 
and the boiling point of water. The next step is 
to sub-divide this standard temperature interval 
into sub-intervals by utilizing some physical 
property that changes with temperature and 
call each sub-interval a degree of temperature. 
This procedure sets up an empirical scale for 
temperature.
 *  The temperature at which pure water 

freezes at one standard atmospheric 
pressure is called ice point/ freezing point 
of water. This is also the melting point of 
ice.

 *  The temperature at which pure water boils 
and vaporizes into steam at one standard 
atmospheric pressure is called steam point/ 
boiling point. This is also the temperature 
at which steam changes to liquid water.
Having decided the fixed point phenomena, 

it remains to assign numerical values to these 
fixed points and the number of divisions 
between them. In 1750, conventions were 
adopted to assign (i) a temperature at which 
pure ice melts at one atmosphere pressure 
(the ice point) to be 0º and (ii) a temperature 
at which pure water boils at one atmosphere 
(the steam point) to be 100º so that there are 
100 degrees between the fixed points. This was 
the centigrade scale (centi meaning hundred in 
Latin). This was redefined as celcius scale after 
the Swedish scientist Anders Celcius (1701-
1744). It is a convention to express temperature 
as degree celcius (ºC).

 To measure temperature quantitatively, 
generally two different scales of temperature 
are used. They are describe below.

 1)  Celsius scale:- On this scale, the ice point is 
marked as 0 and the steam point is marked 
as 100, both taken at normal atmospheric 
pressure (105 Pa or N/m2). The interval 
between these points is divided into 100 
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equal parts. Each of these is known as 
degree Celsius and is written as ºC.

 2) Fahrenheit scale :- On this scale, the ice 
point is market as 32 and the steam point 
is marked as 212, both taken at normal 
atmospheric pressure. The interval between 
these points is divided into 180 equal 
parts. Each division is known as degree 
Fahrenheit and is written as °F.
A relationship for conversion between 

the two scales may be obtained from a graph 
of fahrenheit temperature (T

F
) versus celsius 

temperature (T
C
). The graph is a straight line 

(Fig. 7.1) whose equation is 
T TF C�

�
32

180 100     
--- (7.1)

Fig. 7.1: A plot of fahrenheit temperature 
(T

F
) versus celsius temperature (T

C
).

Example 7.1: Average room temperature 
on a normal day is 27 °C. What is the room 
temperature in °F? 
Solution: We have

T T

T T

T

T

F C=   
�

� �

�

�

32

180 100
180

100

180

100

F C

C

F

 + 32

Given = 27 C,

  27 + 32

        =  48.6 + 32

        = 80.6 F

�

�

 

Example 7.2: Normal human body temperature 
in feherenheit is 98.4 °F. What is the body 
temperature in °C?
Solution: We have

T T

T T

C F   
100

32

180
100

180

�
�

� �C F ( -32)
 

Given = 98.4 F,

(98.4-32)

(66.4)

    

F

C

T

T

�

�

�

100

180
100

180
     

  = 36.89 C�

A device used to measure temperature, is 
based on the principle of thermal equilibrium. 
To measure the temperature, we use different 
measurable properties of materials which 
change with temperature. Some of them are 
length of a rod, volume of a liquid, electrical 
resistance of a metal wire, pressure of a gas at 
constant volume etc. Such changes in physical 
properties with temperature are used to design 
a thermometer. Physical property that is used in 
the thermometer for measuring the temperature 
is called the thermometric property and the 
material employed for the purpose is termed 
as the thermometric substance. Temperature 
is measured by exploiting the continuous 
monotonic variation of the chosen property 
with temperature. A calibration, however, is 
required to define the temperature scale. 

There are different kinds of thermometers 
each type being more suitable than others for a 
certain job. In each type, the physical property 
used to measure the temperature must vary 
continuously over a wide range of temperature. 
It must be accurately measurable with simple 
apparatus. 

An important characteristic of a 
thermometer is its sensitivity, i.e., a change in the 
thermometric property for a very small change 
in temperature. Two other characteristics 
are accuracy and reproducibility. Also it is 
important that the system attains thermal 
equilibrium with the thermometer quickly.

If the values of a thermometric property 
are P

1
 and P

2
 at the ice point (0 ºC) and steam 

point (100 ºC) respectively and the value of this 
property is P

T
 at unknown temperature T, then 

T is given by the following equation

T
P P

P P
�

�� �
�� �

�
100 1

2 1

T

     
--- (7.2)

Ideally, there should be no difference 
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in temperatures recorded on two different 
thermometers. This is seen for thermometers 
based on gases as thermometric substances. In a 
constant volume gas thermometer, the pressure 
of a fixed volume of gas (measured by the 
difference in height) is used as the thermometric 
property. It is an accurate but bulky instrument. 

Liquid-in-glass thermometer depends 
on the change in volume of the liquid with 
temperature. The liquid in a glass bulb expands 
up a capillary tube when the bulb is heated. The 
liquid must be easily seen and must expand (or 
contract) rapidly and by a large amount for a 
small change in temperature over a wide range 
of temperature. Most commonly used liquids 
are mercury and alcohol as they remain in liquid 
state over a wide range. Mercury freezes at -39 
°C and boils at 357 °C; alcohol freezes at -115 °C 
and boils at 78 °C. Thermochromic liquids are 
ones which change colour with temperature but 
have a limited range around room temperatures. 
For example, titanium dioxide and zinc oxide 
are white at room temperature but when heated 
change to yellow.

Example 7.3: The length of a mercury column 
in a mercury-in-glass thermometer is 25 mm at 
the ice point and 180 mm at the steam point. 
What is the temperature when the length is 60 
mm?

Solution: Here the thermometric property P is 
the length of the mercury column. Using Eq. 
(7.2), we get 

 
T �

�� �
�� �

� ��
100 60 25

180 25
22 58.  C

Resistance thermometer uses the change 
of electrical resistance of a metal wire 
with temperature. It measures temperature 
accurately in the range -2000 °C to 1200 °C but 
it is bulky and is best for steady temperatures. 

Example 7.4: A resistance thermometer has 
resistance 95.2 Ω at the ice point and 138.6 Ω 
at the steam point. What resistance would be 
obtained if the actual temperature is 27 ºC?

Solution: Here the thermometric property P 
is the resistance. Using Eq. (7.2), if R is the 
resistance at 27 ºC, we have 

 27
100 95 2

138 6 95 2
�

�� �
�� �

�
.

. .

R ,

 

� �
� �� �

�

� � �

R
27 138 6 95 2

100
95 2

11 72 95 2 106 92

�
�

�� �

. .
.

. . .      �

Normally in research laboratories, 
a thermocouple is used to measure the 
temperature. A thermocouple is a junction of 
two different metals or alloys e.g., copper and 
iron joined together. When two such  junctions 
at the two ends of two dissimilar metal rods 
are kept at two different temperatures, an 
electromotive force is generated that can be 
calibrated to measure the temperature. 

Thermistor is another device used to 
measure temperature based on the change in 
resistance of a semiconductor materials i.e., the 
resistance is the thermometric property. You 
will learn more about this device in  Chapter  
14 on Semiconductors.

7.4 Absolute Temperature and Ideal Gas 
Equation:

7.4.1 Absolute zero and absolute temperature

Experiments carried out with gases at 
low densities indicate that while pressure is 
held constant, the volume of a given quantity 
of gas is directly proportional to temperature 
(measured in ºC). Similarly, if the volume of 
a given quantity of gas is held constant, the 
pressure of the gas is directly proportional to 
temperature (measured in ºC). These relations 
are graphically shown in Fig. 7.2 (a) and (b). 
Mathematically, this relationship can be written 
as PV ∝ T

C
.  Thus the volume-temperature 

or pressure-temperature graphs for a gas are 
straight lines. They show that gases expand 
linearly with temperature on a mercury 
thermometer i.e., equal temperature increase 
causes equal volume or pressure increase. The 
similar thermal behavior of all gases suggests 
that this relationship of gases can be used to 
measure temperature in a constant-volume gas 
thermometer in terms of pressure of the gas.

Although actual experimental 
measurements might differ a little from the 
ideal linear relationship, the linear relationship 
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holds over a wide temperature range. 

Fig. 7.2 (a): Graph of volume versus  
temperature (in °C) at constant pressure.

Fig. 7.2 (b): Graph of pressure versus 
temperature (in °C) at constant volume. 

It may be noted that the lines do not 
pass through the origin i.e., have non-zero 
intercept along the y-axis. The straight lines 
have different slopes for different gases. If we 
assume that the gases do not liquefy even if 
we lower the temperature, we can extend the 
straight lines backwards for low temperatures. 
Is it possible to reach a temperature where the 
gases stop exerting any pressure i.e., pressure is 
zero? In a constant pressure thermometer, as the 
temperature is lowered, the volume decreases. 
Suppose the gas does not liquefy even at very 
low temperature, at what temperature, will 
its volume become zero? Practically it is not 
possible to keep a material in gaseous state for 
very low temperature and without exerting any 
pressure. If we extrapolate the graph of pressure 
P versus temperature T

C
 (in ºC), the temperature 

at which the pressure of a gas would be zero 
is -273.15 ºC. It is seen that all the lines for 
different gases cut the temperature axis at the 
same point at i.e., -273.15 ºC. This point is 
termed as the absolute zero of temperature. 
It is not possible to attain a temperature lower 
than this value. Even to achieve absolute zero 

temperature is not possible in practice. It may 
be noted that the point of zero pressure or zero 
volume does not depend on any specific gas.

The two fixed point scale, described in 
Section 7.3, had a practical shortcoming for 
calibrating the scale. It was difficult to precisely 
control the pressure and identify the fixed 
points, especially for the boiling point as the 
boiling temperature is very sensitive to changes 
in pressure. Hence, a one fixed point scale 
was adopted in 1954 to define a temperature 
scale. This scale is called the absolute scale or 
thermodynamic scale. It is named as the kelvin 
scale after Lord Kelvin (1824-1907).

It is possible for all the three phases - solid, 
liquid and gas/vapour of a material - to coexist 
in equilibrium. This is known as the triple point. 
To know the triple point one has to see that three 
phases coexist in equilibrium and no one phase 
is dominating.  This occurs for each substance at 
a single unique combination of temperature and 
pressure. Thus if three phases of water - solid 
ice, liquid water and water vapour- coexist, 
the pressure and temperature are automatically 
fixed. This is termed as the triple point of water 
and is a single fixed point to define a temperature 
scale.   

The absolute scale of temperature, is so 
termed since it is based on the properties of an 
ideal gas and does not depend on the property 
of any particular substance. The zero of this 
scale is ideally the lowest temperature possible 
although it has not been achieved in practice. It 
is termed as Kelvin scale with its zero at -273.15 
°C and temperature intervals same as that on 
the celsius scale. It is written as K (without °). 
Internationally, triple point of water has been 
assigned as 273.16 K at pressure equal to 6.11 × 
102 Pa or 6.11 × 10-3 atmosphere, as the standard 
fixed point for calibration of thermometers. Size 
of one kelvin is thus 1/273.16 of the difference 
between the absolute zero and triple point of 
water. It is same as one celcius. On celcius scale, 
the triple point of water is 0.01 ºC and not zero.

Three identical thermometers, marked in 
kelvin, celcius and fahrenheit, placed in a fixed 
temperature bath, each thermometer showing 
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the same rise in the level of mercury for human 
body temperature, are depicted in Fig. 7.3. 

The relation between the three scales of 
temperature is as given in Eq. (7.3) .

T T TC F K

100

32

180

273 15

100
�

�
�

�
�

�
�

� .

  
--- (7.3)

Fig. 7.3: Comparison of the kelvin, 
celsius and fahrenheit temperature scales 
(Thermometer reading are not to the scale).

Example 7.5: Express T
 
= 24.57 K in celsius 

and fahrenheit. 
Solution: We have 

T T T

T T

F C K

K

 =
- 273.15

 
�

�

�

32

180 100 100

C  = -273.15

        = 24.577-273.15

        = - 248.58 C

F

�
�

�

� �

T T

T

F K - 273.15
 

32

180 100
180

1100
9

5
24 57 273 15 32

 ( - 273.15) + 32

  

     

T  K

        � � �( . . )

    = - 447.44 + 32

        = - 415.44 F�

Example 7.6: Calculate the temperature which 
has the same value on fahernheit scale and 
kelvin scale.
Solution: Let the required temperature be y.
i.e., T

F
 = T

K
 = y  then we have 

y y

or y y

or y

�
�

�

� � �
� � �

32

180

273 15

100
5 160 9 2458 35

4 160 2458

.

, .

,

  

  ..

.

35

574 59      � �y

Thus 574.59 °F and 574.59 K are equivalent 
temperatures. 

7.4.2 Ideal Gas Equation:

The relation between three properties of 
a gas i.e., pressure, volume and temperature is 
called ideal gas equation. You will learn more 
about the properties of gases in chemistry. 

Using absolute temperatures, the gas laws 
can be stated as given below.

 1)  Charles’ law- In Fig. 7.2 (b), the volume-
temperature graph passes through the 
origin if temperatures are measured on the 
kelvin scale, that is if we take 0 K as the 
origin. In that case the volume V is directly 
proportional to the absolute temperature T.

        Thus V∝T

    or, V

T
 = constant          --- (7.4)

  Thus Charles' law can be stated as, the 
volume of a fixed mass of gas is directly 
proportional to its absolute temperature if 
the pressure is kept constant. 

 2)  Pressure (Gay Lussac's) law- From 
Fig.7.2, it can be seen that the pressure- 
temperature graph is similar to the volume-
temperature graph.

            Thus P ∝ T

    or, 
P

T
 = constant --- (7.5)

  Pressure law can be stated as the pressure of 
a fixed mass of gas is directly proportional 
to  its absolute temperature if the volume is 
kept constant.

 3)  Boyle’s law- For fixed mass of gas at 
constant temperature, pressure is inversely 
proportional to volume.

             Thus  P
V

∝
1

                       PV = constant --- (7.6)

  Combining above three  equations, we get

    
PV

T = constant  --- (7.7)

  For one mole of a gas, the constant of 
proportionality  is written as R

  ∴
PV

T
 = R  or  PV = RT  --- (7.8)

  If given mass of a gas consists of n moles, 
then Eq. (7.8) can be written as 

  PV= nRT    --- (7.9)
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This relation is called ideal gas equation. 
The value of constant R is same for all gases. 
Therefore, it is known as universal gas constant. 
Its numerical value is 8.31 J K-1 mol-1.
Example 7.7: The pressure reading in a 
thermometer at steam point is 1.367 × 103 Pa. 
What is pressure reading at triple point knowing 
the linear relationship between temperature and 
pressure?

Solution:   We have P
triple

 = 273.16 × 
P

T
�
�
�

�
�
�  where 

P
triple

 and P are the pressures at temperature of 
triple point (273.16 K) and T respectively. We 
are given that P = 1 367 103. ×  Pa at steam point 
i.e., at 273.15 + 100 = 373.15 K.

∴ P
triple

 = 273.16 × 
1 367 10

373 15

3.

.

��

�
�

�

�
�

�
 

= 1 000 103. ×  Pa

7.5 Thermal Expansion: 

When matter is heated, it normally expands 
and when cooled, it normally contracts. The 
atoms in a solid vibrate about their mean 
positions. When heated, they vibrate faster and 
force each other to move a little farther apart. 
This results into expansion. The molecules in 
a liquid or gas move with certain speed. When 
heated, they move faster and force each other 
to move a little farther apart. This results in 
expansion of liquids and gases on heating. The 
expansion is more in liquids than in solids; 
gases expand even more.

A change in the temperature of a body 
causes change in its dimensions. The increase 
in the dimensions of a body due to an increase 
in its temperature is called thermal expansion. 
There are three types of thermal expansion: 
1) Linear expansion, 2) Areal expansion,  
3) Volume expansion.
7.5.1 Linear Expansion:

The expansion in length due to thermal 
energy is called linear expansion.

       
Fig. 7.4: Linear expansion ∆l is exaggerated 
for explanation.

If the substance is in the form of a long 
rod of length l, then for small change ∆T, in 
temperature, the fractional change ∆l/l, in length 
(shown in Fig.7.4), is directly proportional to 
∆T.

�
�

�
�

l

l
T

l

l
T

�

�or      �
   

--- (7.10)
 

where α is called the coefficient of linear 
expansion of solid. Its value depends upon 
nature of the material. Rearranging Eq. (7.10), 
we get 

 

� �

�
�

�
�

l

l T
l l

l T T
= T 0

0 0( )     
--- (7.11)

where  l
0
 = length of rod at 0 °C

 l
T
 = length of rod when heated to T °C

 T
0
 = 0 °C is initial temperature

 T = final temperature 

 ∆l =l
T 
- l

0
 = change in length

 ∆T =T - T
0
= rise in temperature

Referring to Eq. (7.11), if l
0
=1 and T- T

0
=1 °C, 

then

 α = l
T 
- l

0
 (numerically).

Coefficient of linear expansion of a solid 
is thus defined as increase in the length per 
unit original length at 0 °C for one degree 
centigrade rise in temperature.

The unit of coefficient of linear expansion is 
per degree celcius or per kelvin. The magnitude 
of α is very small and it varies only a little with 
temperature. For most practical purposes, α 
can be assumed to be constant for a particular 
material. Therefore, it is not necessary that 
initial temperature be taken as 0 °C. Equation 
(7.11) can be rewritten as  

 
� �

�
�

l l

l T T
2 1

1 2 1( )    --- (7.12)

where  l
1
 = initial length at temperature T

1 
°C  

 l
2
 = final length at temperature T

2 
°C.

Table 7.1 lists average  values of  coefficient 
of linear expansion for some materials in the 
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temperature range 0°C to 100 °C.

Table 7.1: Values of coefficient of linear 
expansion for some common materials.

Materials α (K-1)
Carbon (diamond)

Glass
Iron
Steel
Gold

Copper
Silver

Aluminium
Sulphur
Mercury

Water
Carbon (graphite)

0.1×10-5

0.85×10-5

1.2×10-5

1.3×10-5

1.4×10-5

1.7×10-5

1.9×10-5

2.5×10-5

6.1×10-5

6.1×10-5

6.9×10-5

8.8×10-5

Example 7.8: The length of a metal rod at 27 °C 
is 4 cm. The length increases to 4.02 cm when 
the metal rod is heated upto 387 °C. Determine 
the coefficient of linear expansion of the metal 
rod. 

Solution:  Given 

   T
1 
= 27 °C

  T
2 
= 387 °C

  l
1 
= 4 cm = 4×10-2 m

  l
2
 = 4.02 cm = 4.02×10-2 m

We have
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Example 7.9: Length of an iron rod at 
temperature 27 °C is 4.256 m. Find the 
temperature at which the length of the same rod 
increases to 4.268 m.(α for iron = 1.2×10-5 K-1)

Solution: Given

 T
1
 = 27 °C, l

1
 = 4.256 m, 

 l
2
 = 4.268m, α = 1.2×10-5 K-1 

We have
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T T T T

T T
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l l
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7.5.2 Areal Expansion:
The increase ∆A, in the surface area, on 

heating is called areal expansion or superficial 
expansion.
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Fig. 7.5: Areal expansion ∆A is exaggerated 
for explanation. 

If a substance is in the form of a plate of 
area A, then for small change ∆T in temperature, 
the fractional change in area, ∆A/A (as shown 
in Fig. 7.5), is directly proportional to ∆T.

�
�

�
�

A

A
T

A

A
T

�

�or   �
    

--- (7.13)

where β is called the coefficient of areal 
expansion of solid. It depends on the material 
of the solid. Rearranging Eq. (7.13), we get

 
� � �

�
�

�
�
A

A T

A A

A T T
  T 0

0 ( )0   
--- (7.14)

where A
0
= area of plate at 0 °C

 A
T
 = area of plate when heated to T °C

 T
0
 = 0 °C is initial temperature

 T = final temperature 

 ∆A = A
T 
- A

0
 = change in area

    ∆T =T - T
0
= rise in temperature.

 If A
0
 = 1 m2 and T - T

0
 = 1 °C, then

    β = A
T 
- A

0
 (numerically).



123

Therefore, coefficient of areal expansion of a 
solid is defined as the increase in the area per 
unit original area at 0°C for one degree rise 
in temperature.

The unit of β is per degree celcius or per 
kelvin.

As in the case of α, β also does not vary 
much with temperature. Hence, if A

1
 is the area 

of a metal plate at T
1
 °C and A

2
 is the area at 

higher temperature T
2
 °C, then

 
� �

�
�

A A

A T T
2 1

1 2 1( )     
--- (7.15)

Example 7.10: A thin aluminium plate has an 
area 286 cm2 at 20 °C. Find its area when it is 
heated to 180 °C. 

(β for aluminium = 4.9×10-5 /°C)

Solution: Given  

   T
1 
= 20 °C 

  T
2 
= 180 °C

  A
1
 = 286 cm2

  β = 4.9×10-5 /°C  
We have  

� �
�
�

A A

A T T
2 1

1 2 1( )

∴ A
2
= A

1 
[1 + β (T

2
-T

1
)] 

     = 286 [1 + 4.9×10-5 (180-20)]

     = 286 [1 + 4.9×10-5×160]

     = 286 [1 + 784.0×10-5]

     = 286 [1 + 0.00784]

     = 286 [1.00784]

      ... A
2
 = 288.24 cm2

7.5.3 Volume expansion

The increase in volume due to heating is 
called volume expansion or cubical expansion.
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Fig. 7.6: Volume expansion ∆V is 
exaggerated for explanation. 

If the substance is in the form of a cube 
of volume V, then for small change ∆T in 
temperature, the fractional change, ∆V/V 
(as shown in Fig.7.6), in volume is directly 
proportional to ∆T.
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�

V

V
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V

V
T

�

�or  �    --- (7.16)

where γ is called coefficient of cubical or 
volume expansion. It depends upon the nature 
of the material. Its unit is per degree celcius or 
per kelvin. From Eq.(7.16), we can write 

� � �
��

�
V

V T

V V

V T T
T 0

0 0-( )   
--- (7.17)

where  V
0
 = volume at 0 °C

 V
T
 = volume when heated to T °C

 T
0
 = 0 °C is initial temperature

 T = final temperature 

 ∆V = V
T 
- V

0
= change in volume

 ∆T =T - T
0
= rise in temperature.

If V
0
 = 1 m3, T - T

0
=1 °C, then

    γ =V
T 
- V

0
 (numerically).

The coefficient of cubical expansion of 
a solid is therefore defined as increase in 
volume per unit original volume at 0°C for 
one degree rise in the temperature.

If V
1 
is the volume of a body at T

1
 °C and 

V
2
 is the volume at higher temperature T

2 
°C, 

then 

 
�1

2 1

1 2 1

�
�
�

V V

V T T( )   
--- (7.18)

γ
1 
is the coefficient of volume expansion at 

temperature T
1
 °C. 

Since fluids possess definite volume and 
take the shape of the container, only change 
in volume is significant. Equations (7.17) and 
(7.18) are valid for cubical or volume expansion 
of fluids. It is to be noted that since fluids are kept 
in containers, when one deals with the volume 
expansion of fluids, expansion of the container 
is also to be considered. If expansion of fluid 
results in a volume greater than the volume 
of the container, the fluid will overflow if the 
container is open. If the container is closed, 
volume expansion of fluid will cause additional 
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pressure on the walls of the container. Can you 
now tell why the balloon bursts sometimes on 
its own on a hot day?  

Normally solids and liquids expand on 
heating. Hence their volume increases on 
heating. Since the mass is constant, it results in 
a decrease in the density on heating. You have 
learnt about the anomalous behaviour of water. 
Water expands on cooling from 4°C to 0°C. 
Hence its density decreases on cooling in this 
temperature range.

In Table 7.2 are given typical average 
values of the coefficient of volume expansion 
γ for some materials in the temperature range 
0°C to 100°C.

Table 7.2: Values of coefficient of volume 
expansion for some common materials.

Materials γ (K-1) 

Invar
Glass (ordinary)

Steel
Iron
Gold
Brass

Aluminium
Mercury

Water
Paraffin
Gasoline

Alcohol (ethyl)

2×10-6

2.5×10-5

(3.3-3.9)×10-5

3.55×10-5

4.2×10-5

5.7×10-5

6.9×10-5

18.2×10-5

20.7×10-5

58.8×10-5

95.0×10-5

110×10-5

γ is also characteristic of the substance but 
is not strictly a constant. It depends in general 
on temperature as shown in Fig.7.7. It is seen 
that γ becomes constant only at very high 
temperatures.

Fig. 7.7: Coefficient of volume expansion 
of copper as a function of temperature.

Example 7.11 :  A liquid at 0 °C is poured 
in a glass beaker of volume 600 cm3 to fill it 
completely. The beaker is then heated to 90 °C. 
How much liquid will overflow? 

(γ
liquid

 = 1.75×10-4 /°C, γ
glass

 = 2.75×10-5 /°C)

Solution: Given   

   V
1
= 600 cm3

   T
1
 = 0 °C

   T
2
 = 90 °C

We have

...  increase is volume = V
2 
- V

1
= γ V

1 
(T

2
- T

1
)

Increase in volume of beaker  

  = γ
glass

× V
1 
(T

2
- T

1
)  

  = 2.75×10-5×600×(90-0)	

	 	 = 2.75×10-5×600×90

  = 148500×10-5 cm3

   ...  increase in volume of beaker = 1.485 cm3 

Increase in volume of liquid

   = γ
liquid

 × V
1 
(T

2
- T

1
)

  = 1.75×10-4×600×(90-0)

  = 1.75×10-4×600×90

  = 94500×10-4 cm3

...  increase in volume of liquid		= 9.45 cm3	

...  volume of liquid which overflows 

  = (9.45-1.485) cm3

  = 7.965 cm3

7.5.4  Relation between Coefficients of 
Expansion:

i) Relation between β and α: 
Consider a square plate of side l

0
 at 0 °C 

and l
T
 at T °C. 

... l
T
 = l

0
 (1+αT) from Eq. (7.11).

If area of plate at 0 °C is A
0
, A

0
 = l

0
2.

If area of plate at T °C is A
T
, 

A
T
 = l

T
2 = l

0
2 (1+αT)2 

or A
T
 = A

0
  (1+αT)2   --- (7.19)

Also from Eq. (7.14), 

A
T
 = A

0
  (1+βT)   --- (7.20)

� �
�
�

V V

V T T
2 1

1 2 1( )
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Using Eqs. (7.19) and (7.20), we get 

A
0
  (1+αT)2 = A

0
  (1+βT)

or 1+ 2αT +α2T2 =1+βT
Since the values of α are very small, the 

term α2T2 is very small and may be neglected.
∴ β = 2α    --- (7.21)

Solution: Given 
   T

1
 = 0 °C

  T
2
 = 100 °C

  A
1
 = 50×8 = 400 cm2

  A
2 
= 401.57 cm2

We have
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        C.

∴ Coefficient of linear expansion of brass 
is 1.962×10-5 /°C.

 1. Why the metal wires for electrical 
transmission lines sag?

 2.  Why a railway track is not a continuous 
piece but is made up of segments 
separated by gaps?

 3.  How a steel wheel is mounted on an 
axle to fit exactly?    

 4. Why lakes freeze first at the surface?

Can you tell?

Do you know ?

* When pressure is held constant, due to 
change in temperature, the volume of 
a liquid or solid changes very little in 
comparison to the volume of a gas. 

 * The coefficient of volume expansion, γ, is 
generally an order of magnitude larger for 
liquids than for solids. 

 * Metals have high values for the coefficient 
for linear expansion, α, than non-metals.

 * γ changes more with temperature than α 
and β.

 * We know that water expands on freezing 
from 4 ºC to 0 ºC. Other two substances, 
that expnad on freezing are metals bismuth 
(Bi) and antimony (Sb). Thus the density 
of liquid is more than corresponding solid 
and hence solid Bi or Sb float on their 
liquids like ice floats on water.

7.6 Specific Heat Capacity:

7.6.1 Specific Heat Capacity of Solids and 

          Liquids

If 1 kg of water and 1 kg of paraffin are 
heated in turn for the same time by the same 
heater, the temperature rise of paraffin is about 
twice that of water. Since the heater gives 
equal amounts of heat energy to each liquid, it 
seems that different substances require different 

The result is general because any solid can 
be regarded as a collection of small squares.

ii) Relation between γ and α: 
Consider a cube of side l

0
 at 0 °C 

and l
T
 at T °C. 

... l
T
 = l

0
 (1+αT) from Eq. (7.11).

If volume of the cube at 0 °C is V
0
, V

0
 = l

0
3.

If volume of the cube at T °C is V
T 
,

V
T
 = l

T
3 = l

0
3 (1+αT)3 

or V
T
 = V

0
  (1+αT)3   --- (7.22)

Also from Eq. (7.17), 

V
T
 = V

0
  (1+γT)   --- (7.23)

Using Eqs. (7.22) and (7.23), we get 

V
0
  (1+αT)3 = V

0
  (1+γT)

or 1+ 3αT +3α2T 2 + α3T 3 =1+γT
Since the values of α are very small, the 

terms with higher powers of α may be neglected.
∴ γ = 3α    --- (7.24)
Again the result is general because any 

solid can be regarded as a collection of small 
cubes.

Finally, the relation between α, β and γ is

  
�

� �
� �

2 3    
--- (7.25)

Example 7.12: A sheet of brass is 50 cm long 
and 8 cm broad at 0 °C. If the surface area at 
100 °C is 401.57cm2, find the coefficient of 
linear expansion of brass. 



126

amounts of heat to cause the same temperature 
rise of 1°C in the same mass of 1 kg.  

If ∆Q stands for the amount of heat 
absorbed or given out by a substance of mass 
m when it undergoes a temperature change ∆T, 
then the specific heat capacity of that substance 
is given by

 
s

Q

m T
�
�
�    --- (7.26)

If m = 1 kg and ∆T = 1°C then s = ∆Q.
Thus specific heat capacity is defined as 

the amount of heat per unit mass absorbed 
or given out by the substance to change its 
temperature by one unit (one degree) 1 °C 
or 1K.

Table 7.3: Specific heat capacity of some 
substances at room temperature and 
atmospheric pressure.

Substance Specific heat capacity  
(J kg-1 K-1) 

Steel
Lead
Gold

Tungsten
Silver

Copper
Iron

Carbon
Glass

Aluminium
Kerosene

Paraffin oil
Alcohol (ethyl)

Ethanol
Water

120
128
129

134.4
234
387
448

506.5
837

903.0
2118
2130
2400
2500

4186.0

The SI unit of specific heat capacity is J/ 
kg °C or J/kg K and C.G.S. unit is erg/g °C or 
erg/g K. The specific heat capacity is a property 
of the substance and weakly depends on its 
temperature. Except for very low temperatures, 
the specific heat capacity is almost constant for 
all practical purposes.

If the amount of substance is specified in 
terms of moles µ instead of mass m in kg, then 
the specific heat is called molar specific heat (C) 
and is given by

C
Q

T
�

1

�
�
�    

--- (7.27)

The SI unit of molar specific heat capacity 
is J/mol °C or J/mol K. Like specific heat, molar 
specific heat also depends on the nature of the 
substance and its temperature. Table 7.3 lists 
the values of specific heat capacity for some 
common materials. 

From Table 7.3, it can be seen that water 
has the highest specific heat capacity compared 
to other substances. For this reason, water is 
used as a coolant in automobile radiators as well 
as for fomentation using hot water bags.

7.6.2 Specific Heat Capacity of Gas: 

In case of a gas, slight change in 
temperature is accompanied with considerable 
changes in both, the volume and the pressure. 
If gas is heated at constant pressure, volume 
changes and therefore some work is done on 
the surroundings during expansion requiring 
additional heat. As a result, specific heat at 
constant pressure (S

p
) is greater than specific 

heat at constant volume (S
v
). It is thus necessary 

to define two principal specific heat capacities 
for a gas. 

Principal specific heat capacities of gases:

 a)  The principal specific heat capacity of a  
gas at constant volume (S

v
) is defined as 

the quantity of heat absorbed or released 
for the rise or fall of temperature of unit 
mass of a gas through 1 K (or 1°C) when 
its volume is kept constant.

 b)  The principal specific heat capacity of a 
gas at constant pressure (S

p
) is defined as 

the quantity of heat absorbed or released 
for the rise or fall of temperature of unit 
mass of a gas through 1K (1°C) when its 
pressure is kept constant.

Molar specific heat capacities of gases:

 a)  Molar specific heat capacity of a gas at 
constant volume (C

v
) is defined as the 

quantity of heat absorbed or released for 
the rise or fall of temperature of one mole 
of the gas through 1K (or 1°C), when its 
volume is kept constant.
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 b)  Molar specific heat capacity of a gas at 
constant pressure (C

p
) is defined as the 

quantity of heat absorbed or released for 
the rise or fall of temperature of one mole 
of the gas through 1K (or 1°C), when its 
pressure is kept constant.

Relation between Principal and Molar 
Specific Heat Capacities:

A relation between principal specific heat 
capacity and molar specific heat capacity is 
given by the following expression 

Molar specific heat capacity = Molecular 
weight × principal specific heat capacity.

i.e. C
p
= M × S

p
 and C

v
= M × S

v
 

where M is the molecular weight of the gas.

 Table 7.4 lists values of molar specific 
heat capacity for some commonly known gases.  

Table 7.4: Molar specific heat capacity of 
some gases.

Gas C
P

(J mol-1 K-1)
C

V
 

(J mol-1 K-1)
He
H

2

N
2

O
2

CO
2

20.8
28.8
29.1
29.4
37.0

12.5
20.4
20.8
21.1
28.5

7.6.3 Heat Equation:

If a substance has a specific heat capacity 
of 1000 J/kg °C, it means that heat energy of 
1000 J raises the temperature of 1 kg of that 
substance by 1°C or 6000 J will raise the 
temperature of 2 kg of the substance by 3 °C. If 
the temperature of 2 kg mass of the substance 
falls by 3 °C, the heat given out would also 
be 6000 J. In general we can write the heat 
equation as

Heat received or given out (Q) = mass 
(m) × temperature change (∆t) ×	specific heat 
capacity (s).

or  Q = m × ∆T × s   --- (7.28)

Example 7.13: If the temperature of 4 kg 
mass of a material of specific heat capacity  
300 J/ kg °C rises from 20 °C to 30 °C. Find the 
heat received. 
Solution:

Q = 4 kg × (30-20) °C × 300 J/kg °C

    = 4×10 × 300 J

   ... Q = 12000 J

7.6.4 Heat Capacity (Thermal Capacity): 

Heat capacity or thermal capacity of a 
body is the quantity of heat needed to raise or 
lower the temperature of the whole body by 
1°C (or 1K).

∴ Thermal heat capacity can be written as 
Heat received or given out 

= mass × 1 × specific heat capacity

Heat capacity = Q = m × s    --- (7.29)

Heat capacity (thermal capacity) is measured 
in J/°C. 

Example 7.14: Find thermal capacity for a 
copper block of mass 0.2 kg, if specific heat 
capacity of copper is 290 J/kg °C.
Solution: Given 

m = 0.2 kg
s = 290 J/kg °C

Thermal capacity = m × s = 0.2 kg×290 J/kg °C 
                    =58 J/ °C
7.7 Calorimetry: 

Calorimetry is an experimental technique 
for the quantitative measurement of heat 
exchange. To make such measurement a 
calorimeter is used. Figure 7.8 shows a simple 
water calorimeter. 

It consists of cylindrical vessel made of 
copper or aluminium and provided with a stirrer 
and a lid. The calorimeter is well-insulated to 
prohibit any transfer of heat into or out of the 
calorimeter. 

Fig. 7.8: Calorimeter.
One important use of calorimeter is to 

determine the specific heat of a substance using 
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the principle of conservation of energy. 
Here we are dealing with heat energy and the 
system is isolated from surroundings. Therefore, 
heat gained is equal to the heat lost.

In the technique known as the “method 
of mixtures”, a sample 'A' of the substance is 
heated to a high temperature which is accurately 
measured. The sample 'A' is then placed quickly 
in the calorimeter containing water. The contents 
are stirred constantly until the mixture attains a 
final common temperature. The heat lost by the 
sample 'A' will be gained by the water and the 
calorimeter. The specific heat of the sample 'A' 
of the substance can be calculated as under:

Let

m
1 
= mass of the sample 'A'

m
2 
= mass of the calorimeter and the stirrer

m
3 
= mass of the water in calorimeter

s
1 
= specific heat capacity of the substance of 

sample 'A'

s
2 
= specific heat capacity of the material of 

calorimeter (and stirrer)

s
3 
= specific heat capacity of water

T
1 
= initial temperature of the sample 'A'

T
2 

= initial temperature of the calorimeter 
stirrer and water

T = final temperature of the combined system

We have the data as follows:

Heat lost by the sample 'A' = m
1
s

1 (T1
- T)

Heat gained by the calorimeter and the stirrer 

    = m
2
s

2
 (T - T

2
)

Heat gained by the water  = m
3
s

3
 (T - T

2
)

Assuming no loss of heat to the 
surroundings, the heat lost by the sample goes 
into the calorimeter, stirrer and water. Thus 
writing heat equation as,

  m
1
s

1
(T

1
- T) 

  = m
2
s

 2
(T - T

2
) + m

3
s

3
(T - T

2
)    ---(7.30)

Knowing the specific heat capacity of 
water (s

3 = 4186 J kg-1 K-1) and copper (s
2 = 387 

J kg-1 K-1) being the material of the calorimeter 
and the stirrer, one can calculate specific heat 
capacity (s

1
) of material of sample 'A', from Eq. 

(7.30) as

 
s

m s m s T T

m T T1
2 2 3 3 2

1 1

�
� �

�
( )( )

( )   
--- (7.31)

Also, one can find specific heat capacity 
of water or any liquid using the following 
expression, it the specific heat capacity of the 
material of calorimeter and sample is known

  
s

m s T T

m T T

m s

m3
1 1 1

3 2

2 2

3

�
�
�

�
( )

( )
 
 

--- (7.32)

Note - In the experiment, the heat from the solid 
sample 'A' is given to the liquid and therefore 
the sample should be denser than the liquid, so 
that sample does not float on the liquid.

Example 7.15: A sphere of aluminium of 0.06 
kg is placed for sufficient time in a vessel 
containing boiling water so that the sphere is 
at 100 °C. It is then immediately transferred to 
0.12 kg copper calorimeter containing 0.30 kg 
of water at 25 °C. The temperature of water rises 
and attains a steady state at 28 °C. Calculate 
the specific heat capacity of aluminium. 
(Specific heat capacity of water, s

w
 = 4.18 × 

103J kg-1 K-1, specific heat capacity of copper  
s

Cu
 = 0.387×103 J kg

-1 
K

-1
)

Solution : Given

Mass of aluminium sphere = m
1
 = 0.06 kg

Mass of copper calorimeter = m
2
= 0.12 kg

Mass of water in calorimeter 

 = m
3
= 0.30 kg

Specific heat capacity of copper 

 = s
Cu

 = s
2 
= 0.387×103 J kg-1 K-1

Specific heat capacity of water 

 = s
w
 = s

3
= 4.18×103 J kg-1 K-1

Initial temperature of aluminium sphere 

 = T
1
 =100°C

Initial temperature of calorimeter and 
water = T

2
= 25°C

Final temperature of the mixture 

= T = 28°C

We have 
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s
m s m s T T

m T T1
2 2 3 3 2

1 1

0 12 387 0 30 4180

�
� �

�

�� � � �� �

( )( )

( )

. .

  

    = 
��� �� �� �

�

�� ��
�

28 25

0 06 100 28

46 44 1254 3

0 06 72

( . )( )

.

( . )

 

     = =
33901 32

4 32

.

.

     =  903.08 J kg  K-1 -1

∴ Specific heat capacity of aluminium is 

903.08 J kg-1 K-1.

7.8 Change of State:

Matter normally exists in three states: solid, 
liquid and gas. A transition from one of these 
states to another is called a change of state. Two 
common changes of states are solid to liquid and 
liquid to gas (and vice versa). These changes 
can occur when exchange of heat takes place 
between the substance and its surroundings.  

To understand the process of change of 
state

Take some cubes of ice in a beaker. 
Note the temperature of ice (0 °C). Start 
heating it slowly on a constant heat source. 
Note the temperature after every minute. 
Continuously stir the mixture of water and 
ice. Observe the change in temperature. 
Continue heating even after the whole of 
ice gets converted into water. Observe 
the change in temperature as before till 
vapours start coming out. Plot the graph 
of temperature (along y-axis) versus time 
(along x-axis). You will obtain a graph 
of temperature versus time as shown in  
Fig. 7.9.

Activity

(ice) to liquid (water).

Fig. 7.9 : Variation of temperature with time.

 a)  The change of state from solid to liquid is 
called melting and from liquid to solid is 
called solidification.

 b)  Both the solid and liquid states of the 
substance co-exist in thermal equilibrium 
during the change of states from solid to 
liquid or vice versa.

 c)  The temperature at which the solid and 
the liquid states of the substance are in 
thermal equilibrium with each other is 
called the melting point of solid (here ice) 
or freezing point of liquid (here water). It 
is characteristic of the substance and also 
depends on pressure.

 d)  The melting point of a substance at one 
standard atmospheric pressure is called its 
normal melting point.

 e)  At one standard atmospheric pressure, the 
freezing point of water and melting point 
of ice is 0 °C or 32°F. The freezing point 
describes the liquid to solid transition 
while melting point describes solid-to-
liquid transition.

2) From point B to D:
 The temperature begins to rise from point 

B to point C, i.e., after the whole of ice gets 
converted into water and we continue further 
heating. We see that temperature begins to 
rise. The temperature keeps on rising till it 
reaches point C i.e., nearly 100 °C. Then it 
again becomes steady. It is observed that the 
temperature remains constant until the entire 
amount of the liquid is converted into vapour. 
The heat supplied is now being utilized to 
change water from liquid state to vapour or 
gaseous state.
 a)  The change of state from liquid to vapour 

Analysis of observations :

1) From point A to B:

There is no change in temperature from 
point A to point B, this means the temperature 
of the ice bath does not change even though 
heat is being continuously supplied. That is the 
temperature remains constant until the entire 
amount of the ice melts. The heat supplied is 
being utilised in changing the state from solid 
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is called vapourisation while that from 
vapour to liquid is called condensation.

 b)  Both the liquid and vapour states of the 
substance coexist in thermal equilibrium 
during the change of state from liquid to 
vapour. 

 c)  The temperature at which the liquid and 
the vapour states of the substance coexist 
is called the boiling point of liquid, 
here water or steam point. This is also 
the temperature at which water vapour 
condenses to form water. 

 d)  The boiling point of a substance at one 
standard atmospheric pressure is called its 
normal boiling point. 

 1.  What after point D in graph ? Can steam 
be hotter than 100 °C ? 

 2.  Why steam at 100 °C causes more harm 
to our skin than water at 100 °C?

Can you tell?

Activity
  Activity to understand the dependence 

of boiling point on pressure
Take a round bottom flask, more than 

half filled with water. Keep it over a burner 
and fix a thermometer and steam outlet 
through the cork of the flask 
as shown in figure. As water 
in the flask gets heated, note 
that first the air, which was 
dissolved in the water comes 
out as small bubbles. Later 
bubbles of steam form at the 
bottom but as they rise to the 
cooler water near the top, they 
condense and disappear. Finally, as the 
temperature of the entire mass of the water 
reaches 100 °C, bubbles of steam reach the 
surface and boiling is said to occur. The 
steam in the flask may not be visible but as 
it comes out of the flask, it condenses as tiny 
droplets of water giving a foggy appearance.

If now the steam outlet is closed for a 
few seconds to increase the pressure in the 

You must have seen that water spilled 
on floor dries up after some time. Where does 
the water disappear? It is converted into water 
vapour and mixes with air. We say that water 
has evaporated. You also know that water can be 
converted into water vapour if you heat the water 
till its boiling point. What is then the difference 
between boiling and evaporation?

Both evaporation and boiling involve 
change of state, evaporation can occur at any 
temperature but boiling takes place at a fixed 
temperature for a given pressure, unique for each 
liquid. Evaporation takes place from the surface 
of liquid while boiling occurs in the whole liquid. 

As you know, molecules in a liquid are 
moving about randomly. The average kinetic 
energy of the molecules decides the temperature 
of the liquid. However, all molecules do not 
move with the same speed. One with higher 
kinetic energy may escape from the surface 
region by overcoming the interatomic forces. 
This process can take place at any temperature. 
This is evaporation. If the temperature of the 
liquid is higher, more is the average kinetic 
energy. Since the number of molecules is fixed, it 
implies that the number of fast moving molecules 

Do you know ?

is more. Hence the rate of losing such molecules 
to atmosphere will be larger. Thus, higher is the 
temperature of the liquid, greater is the rate of 
evaporation. Since faster molecules are lost, the 
average kinetic energy of the liquid is reduced 
and hence the temperature of the liquid is 
lowered. Hence the phenomenon of evaporation 
gives a cooling effect to the remaining liquid. 
Since evaporation takes place from the surface 
of a liquid, the rate of evaporation is more if the 
area exposed is more and if the temperature of 
the liquid is higher. 

You might have seen that if your mother 
wants her sari/clothes to dry faster, she does 
not fold them. More is the area exposed, faster 
is the drying because the water gets evaporated 
faster. The presence of wind or strong breeze 
and content of water vapour in the atmosphere 
are two other important factors determining the 
drying of clothes but we do not refer to them here.

Before giving an injection to a patient, 
normally a spirit swab is used to disinfect the 
region. We feel a cooling effect on our skin due 
to evaporation of the spirit as explained before.
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flask, you will notice that boiling stops. 
More heat would be required to raise the 
temperature (depending on the increase in 
pressure) before boiling starts again. Thus 
boiling point increases with increase in 
pressure.

Let us now remove the burner. Allow 
water to cool to about 80°C. Remove the 
thermometers and steam outlet. Close the 
flask with a air tight cork. Keep the flask 
turned upside down on a stand. Pour ice-
cold water on the flask. Water vapours in the 
flask condense reducing the pressure on the 
water surface inside the flask. Water begins 
to boil again, now at a lower temperature. 
Thus boiling point decreases with decrease 
in pressure and increases with increase in 
pressure.

7.8.1 Sublimation:

Have you seen what happens when 
camphor is burnt? All substances do not pass 
through the three states: solid-liquid-gas. 
There are certain substances which normally 
pass from the solid to the vapour state directly 
and vice versa. The change from solid state to 
vapour state without passing through the liquid 
state is called sublimation and the substance is 
said to sublime. Dry ice (solid CO

2
) and iodine 

sublime. During the sublimation process, both 
the solid and vapour states of a substance 
coexist in thermal equilibrium. Most substances 
sublime at very low pressures.

7.8.2 Phase Diagram:

A pressure - temperature (PT) diagram 
often called a phase diagram, is particularly 
convenient for comparing different phases of a 
substance.

A phase is a homogeneous composition of 
a material. A substance can exist in different 
phases in solid state, e.g., you are familiar with 
two phases of carbon- graphite and diamond. 
Both are solids but the regular geometric 

 1. Why cooking is difficult at high altitude?
 2. Why cooking is faster in pressure cooker?

Can you tell?

arrangement of carbon atoms is different in the 
two cases. Figure 7.10 shows the phase diagram 
of water and CO

2
. Let us try to understand the 

diagram.  

Fig. 7.10 (a): Phase diagram of water (not 
to scale).

Fig. 7.10 (b): Phase diagram of CO
2
 (not to 

scale).

i) Vapourisation curve l - v: The curve labelled 
l - v represents those points where the liquid and 
vapour phases are in equilibrium. Thus it is a 
graph of boiling point versus pressure. Note 
that the curves correctly show that at a pressure 
of 1 atmosphere, the boiling points of water is 
100°C and that the boiling point is lowered for 
a decreased pressure.

ii) Fusion curve l - s: The curve l - s represents 
the points where the solid and liquid phases 
coexist in equilibrium. Thus it is a graph of the 
freezing point versus pressure. At one standard 
atmosphere pressure, the freezing point of water 
is 0 °C as shown in Fig. 7.10 (a). Also notice 
that at a pressure of one standard atmosphere 
water is in the liquid phase if the temperature is 
between 0 °C and 100 °C but is in the solid or 
vapour phase if the temperature is below 0 °C 
or above 100 °C. Note that l - s curve for water 
slopes upward to the left i.e., fusion curve of 
water has a slightly negative slope. This is true 
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only of substances that expand upon freezing. 
However, for most materials like CO

2
, the  

l - s curve slopes upwards to the right i.e., fusion 
curve has a positive slope. The melting point of 
CO

2
 is -56 °C at higher pressure of 5.11  atm.

iii) Sublimation curve s - v: The curve 
labelled s - v is the sublimation point versus 
pressure curve. Water sublimates at pressure 
less than 0.0060 atmosphere, while carbon 
dioxide, which in the solid state is called dry 
ice, sublimates even at atmospheric pressure at 
temperature as low as -78 °C.

iv) Triple point: The temperature and pressure 
at which the fusion curve, the vapourisation 
curve and the sublimation curve meet and all the 
three phases of a substance coexist is called the 
triple point of the substance.  That is, the triple 
point of water is that point where water in solid, 
liquid and gaseous states coexist in equilibrium 
and this occurs only at a unique temperature and 
pressure. The triple point of water is 273.16 K 
and 6.11×10-3 Pa and that of CO

2 
is -56.6 °C and 

5.1×10-5 Pa.

7.8.3 Gas and Vapour:

The terms gas and vapour are sometimes 
used quite randomly. Therefore, it is important 
to understand the difference between the two. 
A gas cannot be liquefied by pressure alone, 
no matter how high the pressure is. In order 
to liquefy a gas, it must be cooled to a certain 
temperature. This temperature is called critical 
temperature.

Critical temperatures for some common gases 
and water vapour are given in Table 7.5. Thus, 
nitrogen must be cooled below -147 °C  to 
liquefy it by pressure.

Table 7.5: Critical Temperatures of some 
common gases and water vapour.

Gas Critical Temperature
(°C) (K)

Air

N
2

O
2

CO
2

Water vapour 

-190

-147

-118

31.1

374

83

126

155

241.9

647

Gas and vapour can thus be defined as-
1) A substance which is in the gaseous phase 
and is above its critical temperature is called 
a gas.
2) A substance which is in the gaseous phase 
and is below its critical temperature is called 
a vapour. 

Vapour can be liquefied simply by 
increasing the pressure, while gas cannot. 
Vapour also exerts pressure like a gas.

7.8.4 Latent Heat:

Whenever there is a change in the state of 
a substance, heat is either absorbed or given out 
but there is no change in the temperature of the 
substance.

Latent heat of a substance is the quantity 
of heat required to change the state of unit 
mass of the substance without changing its 
temperature.

Thus if mass m of a substance undergoes 
a change from one state to the other then the 
quantity of heat absorbed or released is given 
by   Q = mL          --- (7.33) 

where L is known as latent heat and is 
characteristic of the substance. Its SI unit is J 
kg-1. The value of L depends on the pressure and 
is usually quoted at one standard atmospheric 
pressure. 

The quantity of heat required to convert 
unit mass of a substance from its solid state to 
the liquid state, at its melting point, without 
any change in its temperature is called its 
latent heat of fusion (L

f 
).

The quantity of heat required to convert 
unit mass of a substance from its liquid state 
to vapour state, at its boiling point without 
any change in its temperature is called its 
latent heat of vapourization (L

v 
).   

A plot of temperature versus heat energy 
for a given quantity of water is shown is Fig. 
7.11.

From Fig. 7.11, we see that when heat is 
added (or removed) during a change of state, 
the temperature remains constant. Also the 
slopes of the phase lines are not all the same, 
which indicates that specific heats of the various 
states are not equal. For water the latent heat 
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of fusion and vaporisation are L
f
 = 3.33×105J 

kg-1 and L
v
 = 22.6×105J kg-1 respectively. That 

is 3.33105J of heat is needed to melt 1kg of 
ice at 0 °C and 22.6×105J of  heat is needed to 
convert 1 kg of water to steam at 100 °C. Hence, 
steam at 100°C carries 22.6×105J kg-1 more heat 
than water at 100 °C. This is why burns from 
steam are usually more serious than those from 
boiling water. Melting points, boiling point and 
latent heats for various substances are given  in 
Table 7.6.

Fig. 7.11: Temperature versus heat for 
water at one standard atmospheric pressure 
(not to scale). 

The latent heat of vapourization is 
much larger than the latent heat of fusion. 
The energy required to completely separate 
the molecules or atoms is greater than the 
energy needed to break the rigidity (rigid 
bonds between the molecules or atoms) in 
solids. Also when the liquid is converted 
into vapour, it expands. Work has to be done 
against the surrounding atmosphere to allow 
this expansion.

Do you know ?

Table 7.6 : Temperature of change of state and latent heats for various substances at one 
standard atmosphere pressure.

Substance Melting point
(°C)

L
f
 

(×105 Jkg-1)
Boiling point

(°C)
L

v
 

(×105 Jkg-1)

Gold
Lead
Water
Ethyl alcohol
Mercury
Nitrogen
Oxygen

1063
328
0

-114
-39
-210
-219

0.645
0.25
3.33
1.0
0.12
0.26
0.14

2660
1744
100
78
357
-196
-183

15.8
8.67
22.6
8.5
2.7
2.0
2.1

Example 7.16: When 0.1 kg of ice at 0 °C 
is mixed with 0.32 kg of water at 35 °C in a 
container. The resulting temperature of the 
mixture is 7.8 °C. Calculate the heat of fusion 
of ice (s

water
 = 4186 J kg-1 K-1). 

Solution: Given 

   m
ice 

= 0.1 kg

  m
water 

= 0.32 kg

  T
ice 

= 0 °C

  T
water 

= 35 °C

  T
F 
= 7.8 °C

  s
water

 = 4186 kg K-1

Heat lost by water

   = m
water  

s
water

 (T
F
- T

water
)

  = 0.32 kg × 4186 J × (7.8 - 35) °C

   = - 36434.944 J (here negative sign 
indicates loss of heat energy)

Heat required to melt ice = m
ice 

L
f
 = 0.1×L

f

Heat required to raise temperature of water 
(from ice) to final temperature 

  = m
ice 

s (T
 
- T

ice 
)

  = 0.1 kg×4186 J×(7.8 - 0) C°
  = 3265.08 J

Head lost = Heat gained
36434 944 0 1 3265 08

36434 944 3265 08

0 1

. . .

. .

.

� �

�
�

 

  = 3316.98

f

f

L

L 664

     =  3.31698 10  J kg5 -1�
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7.9 Heat Transfer: 

Heat may be transferred from one point 
of body to another in three different ways- by 
conduction, convection and radiation. Heat 
transferes through solids by conduction. In this 
process, heat is passed on from one molecule 
to other molecule but the molecules do not 
leave their mean positions. Liquids and gases 
are heated by convection. In this process, there 
is a bodily movement of the heated molecules. 
In order to transfer heat by conduction and 
convection a material medium is required. 
However transfer of heat by radiation does not 
need any medium. Radiation of heat energy 
takes place by electromagnetic (EM) waves that 
travel with a speed of 3×108 ms-1 in the space/
vacuum . The energy from the Sun comes to us 
by radiation. It may be noted that conduction  is 
a slow process of heat transfer while convection 
is a rapid process. However radiation is the 
fastest process because the transfer of heat takes 
place at the speed of light.

7.9.1 Conduction: 

Conduction is the process by which heat 
flows from the hot end to the cold end of a solid 
body without any net bodily movement of the 
particles of the body.

Heat passes through solids by conduction 
only. When one end of a metal rod is placed in 
a flame while the other end is held in hand, the 
end held in hand slowly gets hotter, although 
it itself is not in direct contact with flame. We 
say that heat has been conducted from the hot 
end to the cold end. When one end of the rod 
is heated, the molecules there vibrate faster. As 
they collide with their slow moving neighbours, 
they transfer some of their energy by collision 
to these molecules which in turn transfer energy 
to their neighbouring molecules still farther 
down the length of the rod. Thus the energy 
of thermal motion is transferred by molecular 
collisions down the rod. The transfer of heat 
continues till the two ends of the rod are at the 
same temperature in principle but this will take 
infinite time. Normally various sections of the 
rod will attain a temperature which remains 
constant but not same through out the length of 

the rod. This method of heat transfer is called 
conduction.

Those solid substances which conduct heat 
easily are called good conductors of  heat e.g. 
silver, copper, aluminium, brass etc. All metals 
are good conductors of heat. Those substances 
which do not conduct heat easily are called bad 
conductors of heat e.g. wood, cloth, air, paper, 
etc. In general, good conductors of heat are 
also good conductors of electricity. Similarly 
bad conductors of heat are bad conductors of 
electricity also.

7.9.1.1 Thermal Conductivity:  

Thermal conductivity of a solid is a 
measure of the ability of the solid to conduct 
heat through it. Thus good conductors of heat 
have higher thermal conductivity than bad  
conductors.

Suppose that one end of a metal rod is 
heated (see Fig 7.12 (a)). The heat flows by 
conduction from hot end to the cold end. As a 
result the temperature of every section of the 
rod starts increasing. Under this condition, the 
rod is said to be in a variable temperature state. 
After some time the temperature at each section 
of the rod becomes steady i.e. does not change. 
Note that temperature of each cross-section of 
the rod is constant but not the same. This is 
called steady state condition. Under steady state 
condition, the temperature at points within the 
rod decreases uniformly  with distance from the 
hot end to the cold end. The fall of temperature 
with distance between the ends of the rod in the 
direction of flow of heat, is called temperature 
gradient.

� �
�

Temperature gradient
T T

x
1 2

where  T
1
= temperature of hot end 

 T
2
= temperature of cold end 

 x = length of the rod

7.9.1.2 Coefficient of Thermal Conductivity:

Consider a cube of each side x and each face 
of cross-sectional area A. Suppose its opposite 
faces are maintained at temperatures T

1
 and T

2 
 

(T
1 
> T

2
) as shown in Fig. 7.12 (b). Experiments 

show that under steady state condition, the 
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quantity of heat ‘Q’ that flows from the hot face 
to the cold face is

 i)  directly proportional to the cross-sectional 
area A of the face. i.e., Q ∝ A

 ii)  directly proportional to the temperature 
difference between the two faces i.e., Q ∝  
(T

1
- T

2
) 

 iii)  directly proportional to time t (in seconds) 
for which heat flows i.e. Q ∝ t

 iv)  inversely proportional to the perpendicular 
distance x between hot and cold faces i.e.,  
Q ∝ 1/x

Combining the above four factors, we 
have the quantity of heat

 

Q
A T T t

x

Q
kA T T t

x

�
�

� �
�

( )

( )

1 2

1 2

  
--- (7.34)

where k is a constant of proportionality and is 
called coefficient of thermal conductivity. Its 
value depends upon the nature of the material.

If A = l m2, T
1
-T

2
= 1 °C (or 1 K), t = 1 s and 

x = 1 m, then from Eq. (7.34), Q = k.

    

Fig 7.12 (a): 
Section of a 
metal bar in the 
steady state.

             

Fig 7.12 (b): Section 
of a cube in the 
steady state.

Thus the coefficient of thermal 
conductivity of a material is defined as the 
quantity of heat that flows in one second 
between the opposite faces of a cube of side 
1 m, the faces being kept at a temperature 
difference of 1°C (or 1 K).

From Eq. (7.34), we have

 
k

Qx

A T T t
�

�( )1 2   
--- (7.35)

SI unit of coefficient of thermal 
conductivity k is J s-1 m-1 °C-1 or J s-1 m-1 K-1 and 
its dimensions are [L1 M1 T-3 K-1]. 

From Eq. (7.34), we also have

 

Q

t

kA T T

x
�

�( )1 2  
  

--- (7.36)

The quantity Q/t, denoted by P
cond

 , is the 
time rate of heat flow (i.e. heat flow per second) 
from the hotter face to the colder face, at right 
angles to the faces. Its SI unit is watt (W). SI 
unit of k can therefore be written as W m-1 °C-1 

or W m-1 K-1.

Using calculus, Eq. (7.36) may be written 
as

dQ

dt
kA

dT

dx
� �

where 
dT

dx
 is the temperature gradient.

The negative sign indicates that heat flow 
is in the direction of decreasing temperature. 

If A
dT

dx

dQ

dt
k= = =1 12 m  and  then,  

(numerically). 

Hence the coefficient of thermal 
conductivity of a material may also be 
defined as the rate of flow of heat per unit 
area per unit temperature gradient when the 
heat flow is at right angles to the faces of a 
thin parallel-sided slab of material. 

The coefficients of thermal conductivity of 
some materials are given in Table 7.7.  

7.9.1.3 Thermal Resistance (R
T
):

Conduction rate P
cond 

is the
 
amount of 

energy transferred per unit time through a slab 
of area A and thickness x, the two sides of the 
slab being at temperatures T

1
 and T

2 
(T

1
 >T

2
), and 

is given by Eq. (7.36) 

P
Q

t
kA

T T

xcond � �
�

�
�1 2

   
--- (7.37)

As discussed earlier, k depends on the 
material of the slab. A material that readily 
transfers heat energy by conduction is a good 
thermal conductor and has high value of k.
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Table 7.7: Coefficient of thermal 
conductivity (k).

Substance Coefficient of thermal 
conductivity (J s-1 m-1 K-1)

Silver
Copper
Aluminium
Steel
Insulating brick
Glass
Brick and concrete
Water
Wood
Air at 0 °C

406
385
205
50.2
0.15
0.8
0.8
0.8

0.04-0.12
0.024

In western countries , where the temperature 
falls below 0 ºC in winter season, insulating the 
house from the surroundings is very important. 
In our country, if we wish to carry cold drinks 
with us for picnic or wish to bring ice-cream 
from the shop to our house, we need to keep 
them in containers (made up of say thermocol) 
that are poor thermal conductors. Hence the 
concept of thermal resistance R

T
, similar 

to electrical resistance, is introduced. The 
opposition of a body, to the flow of heat through 
it, is called thermal resistance. The greater the 
thermal conductivity of a material, the smaller 
is its thermal resistance and vice versa. Thus 
bad thermal conductors are those which have 
high thermal resistance. 

From Eq. (7.37)

( )T T

P

x

kA
1 2�

�
cond     

--- (7.38)

We know that when a current flows through a 
conductor, the ratio V/I is called the electrical 
resistance of the conductor where V is the 
electrical potential difference between the ends 
of the conductor and I is the current or rate 
of flow of charge. In Eq. (7.38), (T

1
-T

2
)

 
is the 

temperature difference between the ends of the 
conductor and P

cond
 is the rate of flow of heat. 

Therefore in analogy with electrical resistance, 
(T

1
-T

2
)/ P

cond
  is called thermal resistance R

T
 of 

the material i.e.,

Thermal resistance R
x

kAT =

The SI unit of thermal resistance is °C s/ kcal 

or   °C  s/J  and  its  dimensional  formula  is  
[M-1 L-2 T3 K1]. 

The lower the thermal conductivity k, 
the higher is the thermal resistance. R

T
 A 

material with high R
T
 value is a poor thermal 

conductor and is a good thermal insulator. 
Thermal resistivity ρ

T
 is the reciprocal of 

thermal conductivity k and is characteristic of a 
material while thermal resistance is that of slab 
(or of rod) and depends on the material and on 
the thickness of slab (or length of rod).

Example 7.17:   What is the rate of energy 
loss in watt per square metre through a glass 
window 5 mm thick if outside temperature 
is -20 ºC and inside temperature is 25 ºC?  
(k

glass 
= 1 W/m K)

Solution : Given

k
glass 

= 1 W/m K

T
1
 = 25 ºC

T
2
 = -20 ºC

x = 5 mm = 5 × 10-3 m

∴ T T1 2-�  = 25 – (-20) ºC = 45 K

We have P
Q

t
kA

T T

xcond � �
�

�
�1 2

.

∴The rate of  energy loss per square metre is 

 
� �

�P

A
k

T T

x
cond �

�1 2

= 1W m-1 K-1 × 45 K / (5 × 10-3 m)
= 9 × 103  W/m2

7.9.1.4 Applications of Thermal Conductivity:
 i)  Cooking utensils are made of metals 

but are provided with handles of bad 
conductors.

         Since metals are good conductors of 
heat, heat can be easily conducted through 
the base of the utensils. The handles of 
utensils are made of bad conductors of 
heat (e.g., wood, ebonite etc.) so that they 
can not conduct heat from the utensils to 
our hands.

 ii)  Thick walls are used in the construction 
of cold storage rooms. Brick is a bad 
conductor of heat so that it reduces the 
flow of heat from the surroundings to 
the rooms. Still better heat insulation 
is obtained by using hollow bricks. Air 
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being a poorer conductor than a brick, it 
further avoids the conduction of heat from 
outside.

 iii)  To prevent ice from melting it is wrapped 
in a gunny bag. A gunny bag is a poor 
conductor of heat and reduces the heat 
flow from outside to ice. Moreover, the 
air filled in the interspaces of a gunny 
bag, being very bad conductor of heat, 
further avoids the conduction of heat from 
outside. 
Low thermal conductivity can also be a 

disadvantage. When hot water is poured in 
a glass beaker the inner surface of the glass 
expands on heating. Since glass is a bad 
conductor of heat, the heat from inside does not 
reach the outside surface so quickly. Hence the 
outer surface does not expand thereby causing a 
crack in the glass.

Example 7.18:  The temperature difference 
between two sides of an iron plate, 2 cm thick, 
is 10 °C. Heat is transmitted through the plate at 
the rate of 600 kcal per minute per square metre 
at steady state. Find the thermal conductivity 
of iron. 
Solution: Given

 

Q
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x
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Example 7.19: Calculate the rate of loss of 
heat through a glass window of area 1000 
cm2 and thickness of 4 mm, when temperature 
inside is 27 °C and outside is -5 °C. Coefficient 
of thermal conductivity of glass is 0.022 cal/ s 
cm °C.

Solution : Given

 A = 1000 cm2 = 1000 ×10-4 m2

k = 0.022 cal/ s cm °C = 0.022 ×102 cal/m °C

x = 4 mm = 0.4 ×10-2 m  

T
1
 = 27 °C, T

2
 = -5 °C

From Eq. (7.34), we have
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7.9.2 Convection: 

We have seen that heat is transmitted 
through solids by conduction wherein energy 
is transferred from one molecule to another but 
the molecules themselves vibrating with larger 
amplitude do not leave their mean positions. 
But in convection, heat is transmitted from one 
point to another by the actual bodily movement 
of the heated (energised) molecules within the 
fluid.

In liquids and gases heat is transmitted by 
convection because their molecules are quite 
free to move about. The mechanism of heat 
transfer by convection in liquids and gases is 
described below.

Consider water being heated in a vessel 
from below. The water at the bottom of the 
vessel is heated first and consequently its 
density decreases i.e., water molecules at the 
bottom are separated farther apart. These hot 
molecules have high kinetic energy and rise 
upward to cold region while the molecules 
from cold region come down to take their place. 
Thus each molecule at the bottom gets heated 
and rises then cools and descends. This action 
sets up the flow of water molecules called 
convection currents. The convection currents 
transfer heat to the entire mass of water. Note 
that transfer of heat is by the bodily/ physical 
movement of the water molecules.
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7.9.2.1 Applications of Convection:

 i) Heating and cooling of rooms  
  The mechanism of heating a room by 

a heat convector or heater is entirely 
based on convection. The air molecules 
in immediate contact with the heater are 
heated up. These air molecules acquire 
sufficient energy and rise upward. The cool 
air at the top being denser moves down to 
take their place. This cool air in turn gets 
heated and moves upward. In this way, 
convection currents are set up in the room 
which transfer heat to different parts of the 
room. The same principle but in opposite 
direction is used to cool a room by an air-
conditioner.  

 ii)  Cooling of transformers  
  Due to current flowing in the windings of 

the transformer, enormous heat is produced. 
Therefore, transformer is always kept in 
a tank containing oil. The oil in contact 
with transformer body heats up, creating 
convection currents. The warm oil comes 
in contact with the cooler tank, gives heat 
to it and descends to the bottom. It again 
warms up to rise upward. This process is 
repeated again and again. The heat of the 
transformer body is thus carried away by 
convection to the cooler tank. The cooler 
tank, in turn loses its heat by convection to 
the surrounding air.

7.9.2.2 Free and Forced Convection:
 i)  When a hot body is in contact with air 

under ordinary conditions, like air around 
a firewood, the air removes heat from the 
body by a process called free or natural 
convection. Land and sea breezes are 
also formed as a result of free convection 
currents in air.

 ii)  The convection process can be accelerated 
by employing a fan to create a rapid 

circulation of fresh air. This is called forced 
convection. Example in section 7.9.2.1 
are of forced convection, namely, heat 
convector, air conditioner, heat radiators 
in IC engine etc.

7.9.3 Radiation: 

The transfer of heat energy from one 
place to another via emission of EM  energy 
(in a straight line with the speed of light) 
without heating the intervening medium is 
called radiation.

For transfer of heat by radiation, molecules 
are not needed i.e. medium is not required. The 
fact that Earth receives large quantities of heat 
form the Sun shows that heat can pass through 
empty space (i.e., vacuum) between the Sun and 
the atmosphere that surrounds the  Earth . In 
fact, transfer of heat by radiation has the same 
properties as light (or EM wave).

A natural question arises as to how heat 
transfer occurs is the absence of a medium 
(i.e., molecules). All objects possess thermal 
energy due to their temperature T(T > 0 K). 
The rapidly moving molecules of a hot body 
emit EM waves travelling with the velocity 
of light. These are called thermal radiations. 
These carry energy with them and transfer it 
to the low-speed molecules of a cold body on 
which they fall. This results in an increase in 
the molecular  motion of the cold body and 
its temperature rises. Thus transfer of heat by 
radiation is a two-fold process- the conversion 
of thermal energy into waves and reconversion 
of waves into thermal energy by the body on 
which they fall. We will learn about EM waves 
in Chapter 13.

7.10 Newton’s Laws of Cooling:

If hot water in a vessel is kept on table, 
it begins to cool gradually. To study how a 
given body can cool on exchanging  heat with 
its surroundings, following experiment is 
performed.

A calorimeter is filled up to two third of 
its capacity with boiling water and is covered. 
A thermometer is fixed through a hole in the 
lid and its position is adjusted so that the bulb 
of the thermometer is fully immersed in water. 

Always remember:

The process by which heat is transmitted 
through a substance from one point to 
another due to the actual bodily movement 
of the heated particles of the substance is 
called convection.
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The calorimeter vessel is kept in a constant 
temperature enclosure or just in open air since 
room temperature  will not change much 
during experiment. The temperature on the 
thermometer is noted at one minute interval 
until the temperature of water decreases by 
about 25 °C. A graph of temperature T (along 
y-axis) is plotted against time t (along x-axis). 
This graph is called cooling curve (Fig 7.13 (a)). 
From this graph you can infer how the cooling 
of hot water depends on the difference of its 
temperature from that of its surroundings. You 
will also notice that initially the rate of cooling 
is higher and it decreases as the temperature 
of the water falls. A tangent is drawn to the 
curve at suitable points on the curve. The slope 
of each tangent (dT/dt) gives the rate of fall of 
temperature at that temperature. Taking (0,0) 
as the origin, if a graph of dT/dt is plotted 
against corresponding temperature difference 
(T-T

0
), the curve is a straight line as shown in 

Fig 7.13 (b).

 

Fig 7.13 (a):
Temperature versus 

time  graph. lim
�

�
�t

T

t�0

 

gives the slope of the  
tangent drawn to the 
curve at point A and 
indicates the rate of 
fall of temperature. 

 

Fig 7.13 (b): 
Rate of change of 
temperature versus 
time graph.

The above activity shows that a hot body 
loses heat to its surroundings in the form of heat 
radiation. The rate of loss of heat depends on 
the difference in the temperature of the body 
and its surroundings. Newton was the first to 
study the relation between the heat lost by a 
body in a given enclosure  and its temperature 
in a systematic manner.

According to Newton’s law of cooling the 
rate of loss of heat dT/dt of the body is directly 
proportional to the difference of temperature  
(T -T

0
) of the body and the surroundings 

provided the difference in temperatures is small. 
Mathematically this may be expressed as

dT

dt
dT
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( )

T -T

T -T

0

0   C 
 
--- (7.39)

where C is constant of proportionality.

Example 7.20: A metal sphere cools at the rate 
of 1.6 °C/min when its temperature is 70°C. At 
what rate will it cool when its temperature is 
40°C. The temperature of surroundings is 30°C.

Solution: Given  T
1
 = 70° C

    T
2
 = 40° C

   T
0
 = 30° C
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According to Newton’s law of cooling, if 
C is the constant of proportionality
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Thus the rate of cooling drops by a factor of 
four when the difference in temperature of the 
metal sphere and its surroundings drops by a 
factor of four.

 1. https://hyperphysics.phy-astr.gsu.edu/
hbase/hframe.html

 2. https://youtu.be/7ZKHc5J6R5Q 
 3. https://physics.info/expansion 

Internet my friend
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Exercises Exercises

1. Choose the correct option.
 i)  Range of temperature in a clinical 

thermometer, which measures the 
temperature of human body, is

  (A)70 ºC to 100 ºC
  (B) 34 ºC to 42 ºC 
  (C) 0 ºF to 100 ºF  
  (D) 34 ºF to 80 ºF
 ii)  A glass bottle completely filled with water 

is kept in the freezer. Why does it crack?
  (A) Bottle gets contracted  
  (B) Bottle is expanded 
  (C) Water expands on freezing  
  (D) Water contracts on freezing
 iii)  If two temperatures differ by 25 °C on 

Celsius scale, the difference in temperature 
on Fahrenheit scale is 

  (A) 65°   (B) 45°  
  (C) 38°   (D) 25° 
 iv)  If α, β and γ are coefficients of linear, area 

l and volume expansion of a solid then
  (A) α:β:γ 1:3:2  (B) α:β:γ 1:2:3
  (C) α:β:γ 2:3:1  (D) α:β:γ 3:1:2
 v) Consider the following statements-
  (I) The coefficient of linear expansion has 

dimension K -1

  (II) The coefficient of volume expansion 
has dimension K -1

   (A) I and II are both correct   
 (B) I is correct but II is wrong

   (C) II is correct but I is wrong  
 (D) I and II are both wrong

 vi) Water falls from a height of 200 m. What is 
the difference in temperature between the 
water at the top and bottom of a water fall 
given that specific heat of water is 4200 J 
kg-1 °C-1?

  (A) 0.96°C  (B) 1.02°C 
  (C) 0.46°C (D) 1.16°C 
2. Answer the following questions. 
 i)    Clearly state the difference between heat 

and temperature?
 ii)    How a thermometer is calibrated ?
 iii)   What are different scales of temperature? 

What is the relation between them? 

 iv)    What is absolute zero?
 v)    Derive the relation between three 

coefficients of thermal expansion.
 vi)   State applications of thermal expansion.
 vii)   Why do we generally consider two 

specific heats for a gas? 
 viii)  Are freezing point and melting point 

same with respect to change of state ? 
Comment. 

 ix)    Define (i) Sublimation (ii) Triple point.
 x)    Explain the term 'steady state'.
 xi)   Define coefficient of thermal 

conductivity. Derive its expression.
 xii)   Give any four applications of thermal 

conductivity in every day life.
 xiii)  Explain the term thermal resistance. 

State its SI unit and dimensions.
 xiv)  How heat transfer occurs through 

radiation in absence of a medium?
 xv)   State Newton’s law of cooling and 

explain how it can be experimentally 
verified. 

 xvi)  What is thermal stress? Give an example 
of disadvantages of thermal stress in 
practical use?

 xvii) Which materials can be used as thermal 
insulators and why?

3. Solve the following problems.
 i)    A glass flask has volume 1×10-4 m3. 

It is filled with a liquid at 30 ºC.  
If  the temperature of the system is raised  
to 100 ºC, how much of the liquid  
will overflow. (Coefficient of volume 
expansion   of   glass   is  1.2×10-5 (ºC)-1 

           
       
                  [Ans : 516.6 × 10-8 m3] 

 ii)    Which will require more energy, heating 
a 2.0 kg block of lead by 30 K or heating 
a 4.0 kg block of copper by 5 K? (s

lead
 = 

128 J kg-1 K-1, s
copper

 = 387 J kg-1 K-1)  
         [Ans : copper]

 iii)    Specific latent heat of vaporization of 
water is 2.26 × 106 J/kg. Calculate the 
energy needed to change 5.0 g of water 

while that of the liquid is 75×10-5 (ºC)-1).
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 x)    An aluminium rod and iron rod show 1.5 
m difference in their lengths when heated 
at all temperature. What are their lengths 
at 0 °C if coefficient of linear expansion 
for aluminium is 24.5×10-6 /°C and for 
iron is 11.9×10-6 /°C    

                               [Ans: 1.417m, 2.917m]
 xi)    What is the specific heat of a metal if 50 

cal of heat is needed to raise 6 kg of the 
metal from 20°C to 62 °C ? 

                           [Ans: s = 0.198 cal/kg °C]
 xii)   The rate of flow of heat through a copper 

rod with temperature difference 30 °C is 
1500 cal/s. Find the thermal resistance 
of copper rod. 

           [Ans: 0.02 °C s cal] 
xiii)    An electric kettle takes 20 minutes to 

heat a certain quantity of water from 0°C 
to its boiling point. It requires 90 minutes 
to turn all the water at 100°C into steam. 
Find the latent heat of vaporisation. 
(Specific heat of water = 1cal/g°C) 

               [Ans: 450 cal/g]
 xiv)  Find the temperature difference between 

two sides of a steel plate 4 cm thick, 
when heat is transmitted through the 
plate at the rate of 400 k cal per minute 
per square metre at steady state. Thermal 
conductivity of steel is 0.026 kcal/m s K. 

                [Ans:10.26°C or 10.26 K]
 xv)   A metal sphere cools from 80 °C to 60 

°C in 6 min. How much time with it take 
to cool from 60 °C to 40 °C if the room 
temperature is 30°C?  

                                        [Ans: 10 min]

***

into steam at 100 ºC.    
            [Ans : 11.3 × 103 J]

 iv)    A metal sphere cools at the rate of 
0.05 ºC/s when its temperature is 70 
ºC and at the rate of 0.025 ºC/s when 
its temperature is 50 ºC. Determine the 
temperature of the surroundings and find 
the rate of cooling when the temperature 
of the metal sphere is 40 ºC.   
            [Ans : 30 ºC,  0.0125 ºC/s]

 v)    The volume of a gas varied linearly with 
absolute temperature if its pressure is 
held constant. Suppose the gas does not 
liquefy even at very low temperatures, at 
what temperature the volume of the gas 
will be ideally zero?    
                         [Ans : -273.15 ºC]

 vi)    In olden days, while laying the rails for 
trains, small gaps used to be left between 
the rail sections to allow for thermal 
expansion. Suppose the rails are laid at 
room temperature 27 ºC. If maximum 
temperature in the region is 45 ºC and 
the length of each rail section is 10 m, 
what should be the gap left given that  
α = 1.2 × 10-5 K-1 for the material of the 
rail section?

                                  [Ans : 2.16 mm]
 vii)   A blacksmith fixes iron ring on the rim of 

the wooden wheel of a bullock cart. The 
diameter of the wooden rim and the iron 
ring are 1.5 m and 1.47 m respectively 
at room temperature of 27 ºC. To what 
temperature the iron ring should be 
heated so that it can fit the rim of the 
wheel (α

iron
 = 1.2×10-5 K-1).  

                              [Ans: 1727.7 °C ] 
 viii)  In a random temperature scale X, water 

boils at 200 °X and freezes at 20 °X. 
Find the boiling point of a liquid in this 
scale if it boils at 62 °C.    
                  [Ans: 131.6°X]

 ix)   A gas at 900°C  is cooled until both 
its pressure and volume are halved. 
Calculate its final temperature.   
                  [Ans: 293.29K]
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8.1 Introduction: 

We are all aware of the ripples created on the 
surface of water when a stone is dropped in it. 
The water molecules oscillate up and down 
around their equilibrium positions but they do 
not move from one point to another along the 
surface of water. The disturbance created by 
dropping the stone, however travels outwards. 
This type of wave is a periodic and regular 
disturbance in a medium which does not cause 
any flow of material but causes the flow of 
energy and momentum from one point to 
another. There are different types of waves and 
not all types require material medium to travel 
through. We know that light is a type of wave 
and it can travel through vacuum. Here we will 
first study different types of waves, learn about 
their common properties and then study sound 
waves in particular. 

Types of waves:  

 (i)  Mechanical waves: A wave is said to be 
mechanical if a material medium is essential 
for its propagation. Examples of these types 
of waves are water waves, waves along a 
stretched string, seismic waves, sound waves, 
etc.

 (ii) EM waves: These are generated due to 
periodic vibrations in electric and magnetic 
fields. These waves can propagate through 
material media, however, material medium is 
not essential for their propagation. These will 
be studied in Chapter 13.

 (iii) Matter waves: There is always a wave 
associated with any object if it is in motion. 
Such waves are matter waves. These are 
studied in  quantum mechanics. 

  Travelling or progressive waves are 
waves in which a disturbance created at 
one place travels to distant points and keeps 
travelling unless stopped by some external 

1. What type of wave is a sound wave?  2. Can sound travel in vacuum?
3. What are reverberation and echo?   4. What is meant by pitch of sound? 

Can you recall?

agencies. In such types of waves energy gets 
transferred from one point to another. Water 
waves mentioned above are travelling waves. 
They keep travelling outward from the point 
where stone was dropped until they are stopped 
by walls of the container or the boundary of the 
water body. Other type of waves are stationary 
waves about which we will learn in XIIth 
standard.  

8.2 Common Properties of all Waves:

The properties described below are valid for 
all types of waves, however, here they are 
described for mechanical waves. 

1) Amplitude (A): Amplitude of a wave motion 
is the largest displacement of a particle of the 
medium through which the wave is propagating, 
from its  rest position. It is measured in metre 
in SI units.

2) Wavelength (l): Wavelength  is the distance 
between two successive particles which are 
in the same state of vibration. It is further 
explained below. It is measured in metre.

3) Period (T): Time required to complete one 
vibration by a particle of the medium is the 
period T of the wave. It is measured in seconds. 

4)  Double  periodicity: Waves possess double 
periodicity. At every location the wave motion 
repeats itself at equal intervals of time, hence 
it is periodic in time. Similarly, at any given 
instant,  the form of wave repeats at equal 
distances hence, it is periodic in space. In 
this way wave motion is a doubly periodic 
phenomenon i.e periodic in time and periodic 
in space.

5) Frequency (n): Frequency of a wave is the 
number of vibrations performed by a particle  
during each second. SI unit of frequency 
is hertz. (Hz) Frequency is a reciprocal  

of time period, i.e., n =
1

T
 

Sound8. 
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6) Velocity (v): The distance covered by a 
wave per unit time is called the velocity of the  
wave. During the period (T), the wave covers a 
distance equal to the wavelength (l) Therefore 
the magnitude of velocity of wave is given by,

 

Magnitude of velocity =
distance

time

                                    v
wavelength

period
=

 
v �

�
T      --- (8.1)

 but 
1

T
n=  (frequency)   --- (8.2)

 � �v n�    --- (8.3)
This equation indicates that, the magnitude 

of velocity of a wave in a medium is constant. 
Increase in frequency of a wave causes decrease 
in its wavelength. When a wave goes from one 
medium to another medium, the frequency of 
the wave does not change. In such a case speed 
and wavelength of the wave change. 

For mechanical waves to propagate through 
a medium, the medium should possess certain 
properties as given below:

 i) The medium should be continuous and 
elastic so that the medium regains original  
state after removal of deforming forces. 

 ii) The medium should possess inertia. The 
medium must be capable of storing energy 
and of transferring it in the form of waves.

 iii) The frictional resistance of the medium 
must be negligible so that the oscillations   
will not be damped.

7) Phase and phase difference: 

     
Fig. 8.1 (a): Displacement as a function of 
distance along the wave.

       
Fig. 8.1 (b): Displacement as a function of 
time.

In the Fig. 8.1 (a), displacements of various 
particles along a sinusoidal wave travelling 
along + ve x-axis are plotted against their 
respective distances from the source (at O) at a 
given instant. This plot is valid for transverse as 
well as longitudinal wave.

The state of oscillation of a particle is called 
its phase.  In order to describe the phase at a 
place, we need to know (a) the displacement (b) 
the direction of velocity and (c) the oscillation 
number (during which oscillation) of the 
particle there. 

In Fig. 8.1 (a), particles P and Q (or E and 
C or B and D) have same displacements but the 
directions of the their velocities are opposite. 
Particles B and F have same magnitude of 
displacements and same direction of velocity. 
Such particles are said to be in phase during 
their respective oscillations. Also, these are 
successive particles with this property of having 
same phase. Separation between these two 
particles is wavelength l. These two successive 
particles differ by '1' in their oscillation number, 
i.e., if particle B is at its nth oscillation, particle 
F will be at its (n +1)th oscillation as the wave is 
travelling along + x direction. Most convenient 
way to understand phase is in terms of angle. 
For a sinusoidal wave, the variation in the 
displacement is a 'sine' function of distance 
from the source and of time as discussed below. 
For such waves it is possible for us to assign 
angles corresponding to the displacement (or 
time).

At the instant the above graph is drawn, 
the disturbance (energy) has just reached the 
particle A. The phase angle corresponding 
to this particle A can be taken as 0°. At this 
instant, particle B has completed quarter 
oscillation and reached its positive maximum 
(sin θ = +1). The phase angle θ of this particle 
B is πc/2 = 90° at this instant. Similarly, phase 
angles of particles C and E are πc (180°) and 2πc 
(360°) respectively. Particle F has completed 
one oscillation and is at its positive maximum 
during its second oscillation. Hence its phase 

angle is 2
2

5

2
�

� �c
c c

� � .  
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B and F are the successive particles in 
the same state (same displacement and same 
direction of velocity) during their respective 
oscillations. Separation between these two is 
wavelength (l). Phase angle between these 
two differs by 2πc. Hence wavelength is better 
understood as the separation between two 
particles with phase difference of 2πc.

As noted above, waves possess double 
periodicity. This means the displacements of 
particles are periodic in space (as shown in Fig. 
8.1 (a))  as well as periodic time. Figure 8.1 
(b) shows the displacement of one particular 
particle as a function of time.

(1)  Using axes of displacement and 

distance, sketch two waves A and B 

such that A has twice the wavelength 

and half the amplitude of B.

(2)  Determine the wavelength and 

amplitude of each of the two waves P 

and Q shown in figure below.

          

Activity :

Characteristics of progressive wave

1) All vibrating particles of the medium have 
same amplitude, period and  frequency.

2) State of oscillation i.e., phase changes from 
particle to particle.

Example 8.1: The speed of sound in air is 330 
m/s and that in glass is 4500 m/s. What is the 
ratio of the wavelength of sound of a given 
frequency in the two media?

Solution:  v
air

 = n l
air

 

    v
glass

 = nl 
glass

  

� � � �
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�

�

�
�

air

glass

air

glass

=
v

v

330

4500
7 33 10

0 0733 7 33 10

2

2

.

. .

8.3 Transverse Waves and Longitudinal 
Waves:
Progressive waves can be of two types, 

transverse and longitudinal waves. 
Transverse waves : A wave in which 
particles of the medium vibrate in a direction 
perpendicular to the direction of propagation of 
wave is called transverse wave. Water waves 
are transverse waves, as water molecules 
vibrate perpendicular to the surface of water 
while the wave propagates along the surface.  
Characteristics of transverse waves.
 1) All particles of the medium in the path of the 

wave vibrate in a direction perpendicular 
to the direction of propagation of the wave 
with same period and amplitude.

 2) When transverse wave passes through 
a medium, the medium is divided  
into alternate the crests i.e., regions of 
positive displacements and troughs i.e., 
regions of negative displacements.

 3) A crest and an adjacent trough form one 
cycle of a transverse wave. The distance 
measured along the wave between any two 
consecutive points in the same phase (crest 
or trough) is called the wavelength of the 
wave.

 4)  Crests and troughs advance in the 
medium and are responsible for transfer of  
energy.

 5)  Transverse waves can travel through solids 
and on surfaces of liquids only. They can 
not travel through liquids and gases. EM 
waves are transverse waves but they do  
not require material medium for 
propagation. 

 6) When transverse waves advance through a 
medium there is no change in the pressure 
and density at any point of medium, 
however shape changes periodically.

 7) If vibrations of all the particles along the 
path of a wave are constrained to be in 
a single plane, then the wave is called 
polarised wave. Transverse wave can be 
polarised.

 8) Medium conveying a transverse wave 
must possess elasticity of shape.



145

Longitudinal waves : A wave in which 
particles of the medium vibrate in a direction 
parallel to the direction of propagation of wave 
is called longitudinal wave. Sound waves are 
longitudinal waves.

Characteristics of longitudinal waves: 
 1) All the particles of medium along the path 

of the wave vibrate in a direction parallel 
to the direction of propagation of wave 
with same period and amplitude.

 2) When longitudinal wave passes through 
a medium, the medium is divided into 
regions of alternate compressions and 
rarefactions. Compression is the region 
where the particles of medium are crowded 
(high pressure zone), while rarefaction is 
the region where the particles of medium 
are more widely separated, i.e. the medium 
gets rarefied (low pressure zone).

 3) A compression and adjacent rarefaction 
form one cycle of longitudinal wave. The 
distance measured along the wave between 
any two consecutive points having the 
same phase is the wavelength of wave.

 4) For propagation of longitudinal waves, 
the medium should possess the property 
of elasticity of volume. Thus longitudinal 
waves can travel through solids. liquids 
and gases. Longitudinal wave can not 
travel through vacuum or free space.

 5) The compression and rarefaction advance 
in the medium and are responsible for 
transfer of energy. 

 6) When longitudinal wave advances through 
a medium there are periodic variations 
in pressure and density along the path of 
wave and also with time.

 7) Longitudinal waves can not be polarised, 
as the direction of vibration of  particles 
and direction of propagation of wave are 
same or parallel.

8.4 Mathematical Expression of a Wave: 
Let us describe a progressive wave 

mathematically. Since it is a progressive wave, 
we require a function of both the position x and 
time t. This function will describe the shape 
of the wave at any instant of time. Another 

requirement of the function is that it should 
describe the motion of the particle of the medium 
at that point. A sinusoidal progressive wave can 
be described by a sinusoidal function. Let us 
assume that the progressive wave is transverse 
and, therefore, the position of the particle of the 
medium is described by a fixed value of x. The 
displacement from the equilibrium position can 
be described by y. Such a sinusoidal wave can 
be written as follows:
y (x,t) = a sin (kx - ωt + φ)   --- (8.4)

Hence a, k, ω and φ are constants.
Let us see the justification for writing this 

equation. At a particular instant say t = t
o
,

y (x, t
0
) = a sin (kx - ωt

0
 + φ) 

= a sin (kx + constant )
 Thus the shape of the wave at t = t

0
, as a 

function of x is a sine wave. 
Also, at a fixed location x = x

0
,

y (x
0
,t) = a sin (kx

0
-ωt + φ)

= a sin (constant - ωt)
Hence the displacement y, at x = x

0
 varies 

as a sine function. 
This means that the particles of the medium, 

through which the wave travels, execute simple 
harmonic motion around their equilibrium 
position. In addition x must increase in the 
positive direction as time t increases, so as to 
keep (kx-ωt + φ) a constant. Thus the Eq. (8.4) 
represents a wave travelling along the positive 
x axis. A wave represented by 

y(x, t) = a sin (kx + ωt + φ) --- (8.5)
is a wave travelling in the direction of the 
negative x axis. 
Symbols in Eq. (8.4):
y (x, t) is the displacement as a function of 
position (x) and time (t)

a is the amplitude of the wave.
ω is the angular frequency of the wave
k is the angular wave number
(kx

0
- ωt + φ) is the argument of the 

sinusoidal wave and is the phase of the particle 
at x at time t. 
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8.5 The Speed of Travelling Waves 
Speed of a mechanical wave depends 

upon the elastic properties and density of the 
medium. The same medium can support both 
transverse and longitudinal waves which have 
different speeds.
8.5.1 The speed of transverse waves

The speed of a wave is determined by 
the restoring force produced in the medium 
when it is disturbed. The speed also depends 
on inertial properties like mass density of the 
medium. The waves produced on a string are 
transverse waves. In this case the restoring 
force is provided by the tension T in the string. 
The inertial property i.e. the linear mass density 
m, can be determined from the mass of string M 
and its length L as m = M/L. The formula for 
speed of transverse wave on stretched string is 
given by 

  
v =

T

m   
--- (8.6)

The derivation of the formula is beyond the 
scope of this book.

The important point here is that the speed of a  
transverse wave depends only on the properties 
of the string, T and m. It does not depend on 
wavelength or frequency of the wave. 
8.5.2 The speed of longitudinal waves

In case of longitudinal waves, the particles 
of the medium oscillate forward and backward 
along the direction of wave propagation. This 
causes compression and rarefaction which 
travel in the medium as the medium possess 
elastic property.

Speed of sound in liquids and solids is 
higher than that in gases. The speed of sound 
as a longitudinal wave in an ideal gas is given 
by Newton’s formula as discussed below.
Speed of sound in different media is given in 
table below.

Table 8.1: Speed of Sound in Gas,  Liquids,  
and Solids

Medium Speed (m/s)
Gases
Air [0°C]
Air [20°C]
Helium 
Hydrogen

331
343
965
1284

Liquids
Water (0°C) 
Water (20°C)
Seawater 

1402
1482
1522

Solids
Vulcanised  Rubber
Copper
Steel
Granite
Aluminium

54
3560
5941
6000
6420

8.5.3 Newton’s formula for velocity of sound:

Propagation of longitudinal waves was 
studied by Newton. Sound waves travel 
through a medium in the form of compressions 
and rarefactions. The density of medium is 
greater at the compression while being smaller 
in the rarefaction. Hence the velocity of sound 
depends on elasticity and density of the medium. 
Newton formulated the relation as

v �
E

�     
--- (8.7)

where E is the proper modulus of elasticity of 
medium and ρ is the density of medium.

Newton assumed that, during propagation 
of sound, there is no change in the average 
temperature of the medium. Hence sound 
wave propagation in air is an isothermal 
process (temperature remaining constant ) and 
isothermal elasticity should be considered. 
The volume elasticity of air determined under 
isothermal change is called isothermal bulk 
modulus and is equal to the atmospheric 
pressure ‘P’. Hence Newtons formula for speed 
of sound in air is given by

v �
P

�     --- (8.8)

Always remember:
When a sound wave goes from one 

medium to another its velocity changes 
along with its wavelength. Its frequency, 
which is decided by the source remains 
constant. 



147

As atmospheric pressure is given by P=hdg

and at NTP,  

 h = 0.76 m of Hg 

 d = 13600 kg/m3-density of mercury

 ρ = 1.293 kg/m3- density of air

and g = 9.8 m/s2

 
v

0.76 13600
�

� �9 8

1 293

.

.

 v = 279.9 m/s at NTP.

This is the value of velocity of sound 
according to Newton’s formula. But the 
experimental value of velocity of sound at 00C 
as determined earlier by a number of scientists 
is 332 m/s. The difference between predicted 
value by Newton’s formula and experimental 
value is large and it is not due to experimental 
error. The Experimental value is 16% greater 
than the value given by the formula. Newton 
could not give satisfactory explanation of this 
discrepancy. It was resolved by French physicist 
Pierre Simon Laplace (1749-1827).

Example 8.2:  Suppose you are listening to an 
out-door live concert sitting at a distance of 150 
m from the speakers. Your friend is listening 
to the live broadcast of the concert in another 
country and the radio signal has to travel 3000 
km to reach him. Who will hear the music first 
and what will be the time difference between 
the two? Velocity of light =3×108 m/s and that 
of sound is 330m/s. 

Solution: Time taken by sound to reach you 

= =
150

330
0 4546s .  

Time taken by the broadcasted sound (which is 
done by EM waves having velocity =3×108m/s)

�
�

�
�
�

� �3000

3 10

3 10

3 10
10

5

3

5
2 km

 km / s
s

∴ your friend will hear the sound first. The 
time difference will be 

 = 0.4546 - 0.01 

 = 0.4446 s.

8.5.4 Laplace’s correction

According to Laplace, the generation 
of compression and rarefaction is not a slow 

process but is a rapid process. If frequency is 
256 Hz, the air is compressed and rarefied 256 
times in a second. Such process must be a rapid 
process. Heat is produced during compression 
and is lost during rarefaction. This heat does not 
get sufficient time for dissipation. Due to this 
the total heat content remains the same. Such 
a process is called an adiabatic process and 
hence, adiabatic elasticity must be adiabatic 
and not isothermal elasticity, as was assumed 
by Newton. 

Always remember:

In isothermal process temperature 
remains constant while in adiabatic 
process there is neither transfer of heat 
nor of mass.

The adiabatic modulus of elasticity of air 
is given by,

 E = γP    --- (8.9)

where  P is the pressure of the medium (air) 
and γ is ratio of specific heat of air at constant 
pressure (Cp) to the specific heat of air at 
constant volume (Cv) called as the adiabatic 
ratio

 

i.e.,   = γ
C

C
p

v
    

--- (8.10)

For air the ratio of Cp / Cv is  1.41

 i.e.  γ = 1.41 

Newton's formula for speed of sound in air as 
modified by Laplace to give 

 
v �

�
�
P

   
--- (8.11)

Accoriding to this formula velocity of sound at 
NTP is

  
v �

� � �1 41 0 76 13600 9 8

1 293

. . .

.

= 332.3 m/s

This value is in close agreement with 
the experimental value. As seen above, the 
velocity of sound depends on the properties of 
the medium. 
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8.5.5 Factors affecting speed of sound: 

As sound waves travel through atmosphere 
(open air), some factors related to air affect the 
speed of sound.

Cp, the specific heat of gas at constant 
pressure, is defined as the quantity of heat 
required to raise the temperature of unit mass 
of gas through 10 K when pressure remains 
constant.

Cv, the specific heat of gas at constant 
volume, is defined as the quantity of heat 
required to raise the temperature of unit mass 
of gas through 10 K when volume remains 
constant. 

When pressure is kept constant the 
volume of the gas increases with increase in 
temperature. Thus additional heat is required 
to increase the volume of gas against the 
external pressure. Therefore heat required 
to raise the temperature of unit mass of gas 
through 10 K when pressure is kept constant 
is greater than the heat required when volume 
is kept constant. i.e. Cp > Cv. 

Do you know ?

Hence for gaseous medium obeying ideal 
gas equation change in pressure has no effect 
on velocity of sound unless there is change in 
temperature. 
Example 8.3: Consider a closed box of rigid 
walls so that the density of the air inside it 
is constant. On heating, the pressure of this 
enclosed air is increased from P

0  
to

 
P. It is now 

observed that sound travels 1.5 times faster 
than at pressure P

0
 calculate P/P

0
.

Solution: 

   

v

v

v  v

 

P
o

P o
o

P P o

o

o

o

P

P

P P

P P

P P

�

�

�

�

�

�

�
�

�
�

�
�

�
�

� �

1 5

1 5

2 25

2 25

.

.

.

.

(b) Effect of temperature on speed of sound
Suppose vo and v are the speeds of sound at 

T
0
 and T in kelvin respectively. Let ρ

0
 and ρ be 

the densities of gas at these two temperatures. 
The velocity of sound at temperature T

0
 and T 

can be written by using Eq. (8.13),

v

v

0
0�

�

�

�

RT

RT

M

M

 
--- M is molar mass, n = 1

� �

� �

v

v

v

v

0 0

0 0

RT

RT

T

T     
--- (8.14)

This equation shows that speed of sound 
in air is directly proportional to the square root 
of absolute temperature. Thus, speed of sound 
in air increases with increase in temperature. 
Taking T

o
= 273 K  and writing T= (273 + t) K 

where t is the temperature in degree celsius. 
The ratio of velocity of sound in air at t 0C to 
that at 00C is given by,

a) Effect of pressure on velocity of sound

According to Laplace’s formula velocity 
of sound in air is

v �
�
�
P

 
If M is the mass and V is volume of air then 

 
� �

M

V

� �v
�PV

M      
--- (8.12)

At constant temperature PV = constant 
according to Boyle’s law. Also M and γ are 
constant, hence v = constant.

Therefore at constant temperature, a 
change in pressure has no effect on velocity of 
sound in air. This can be seen in another way. 
For gaseous medium, PV = nRT, n being the 
number of moles.

� �v
� nRT

M    
--- (8.13)
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� �
�v

v0

273

273

t

� � �
v

v0

1
273

t

� � �
v

v0

1 � t
    

where
 
� �

1

273

or,  v v� �� �0

1

21 � t

As α is very small,we can write

 

v v 0 1
1

2
��

�
�

�
�
�� t

 

v v t� � ��
�
�

�
�
�0 1

1

2

1

273

 

 
v v

t
� ��

�
�

�
�
�0 1

546

  
v v

v
t� �0

0

546

But v
0
 =332 m/s at 00C

� � �v v t0

332

546  

� �� �v v t 0 0 61. ,   --- (8.15)

i.e., for 1°C rise in temperature velocity 
increases by 0.61 m/s. Hence for small 
variations in temperature (< 50° C), the speed 
of sound changes linearly with temperature.

(c) Effect of humidity on speed of sound

Humidity (moisture) in air depends upon 
the presence of water vapour in it. Let ρ

m
 and ρ

d
 

be the densities of moist and dry air respectively. 
If v

m
 and v

d
 are the speeds of sound in moist air 

and dry air then using Eq. (8.11).

        v

and  v

  
v

v

m
m

d
d

m

d

d

m

P

P

�

�

� �

�
�

�
�

�
�

   
--- (8.16)

Moist air is always less dense than dry air, 
i.e., 

ρ
m
< ρ

d 

(ρ
m 

= 0.81 kg/m3(at 0°C) and 

ρ
d
= 1.29 kg/m3(at 0°C))

... v
m
 > v

d
.

Thus, the speed of sound in moist air is 
greater than speed of sound in dry air. i.e speed 
increases with increase in the moistness of air.

8.6 Principle of Superposition of Waves:

Waves don’t display any repulsion towards 
each other. Therefore two wave patterns can 
overlap in the same region of the space without 
affecting each other. When two waves overlap 
their displacements add vectorially. This 
additive rule is referred to as the principle of 
superposition of waves. 

When two or more waves travelling 
through a medium arrive at a point of medium 
simultaneously, each wave produces its own 
displacement at that point independent of 
the others. Hence the resultant displacement 
at that point is equal to the vector sum of 
the displacements due to all the waves. The 
phenomenon of superposition will be discussed 
in detail in XIIth standard.

8.7 Echo, reverberation and acoustics:

Sound waves obey the same laws of 
reflection as those of light. 

8.7.1 Echo:

An echo is the repetition of the original 
sound because of reflection from some rigid 
surface at a distance from the source of sound. 
If we shout in a hilly region, we are likely to 
hear echo.

Why can’t we hear an echo at every place? 
At 220C, the velocity of sound in air is 344 m/s. 
Our brain retains sound for 0.1 second. Thus for 
us to hear a distinct echo, the sound should take 
more than 0.1s after starting from the source 
(i.e., from us) to get reflected and come back 
to us.

distance = speed × time

    = 344 × 0.1

    = 34.4 m.

To be able to hear a distinct echo, the 
reflecting surface should be at a minimum 
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distance of half of the above distance i.e 17.2 
m. As velocity depends on the temperature of 
air, this distance will change with temperature.

Example 8.4: A man shouts loudly close to a 
high wall. He hears an echo. If the man is at 
40 m from the wall, how long after the shout 
will the echo be heard ? (speed of sound in air 
= 330 m/s)
solution: The distance travelled by the sound 
wave 
 = 2 × distance from man to wall.
 = 2 × 40
 = 80 m.

... Time taken to travel the distance =
distance

speed

=
80 m

330 m / s
4 s= 0 2.

 

... The man will hear the echo 0.24 s after he 
shouts.
8.7.2 Reverberation: 

If the reflecting surface is nearer than 15 
m from the source of sound, the echo joins up 
with the original sound which then seems to be 
prolonged. Sound waves get reflected multiple 
times from the walls and roof of a closed 
room which are nearer than 15 m. This causes 
a single sound to be heard not just once but 
continuously. This is called reverberation. It is 
this the persistence of sound after the source has 
switched off, as a result of repeated reflection 
from walls, ceilings and other surfaces. 
Reverberation characteristics are important in 
the design of concert halls, theatres etc. 

If the time between successive reflections 
of a particular sound wave reaching us is small, 
the reflected sound gets mixed up and produces 
a continuous sound of increased loudness which 
can’t be heard clearly.

Reverberation can be decreased by making 
the walls and roofs rough and by using curtains 
in the hall to avoid reflection of sound. Chairs 
and wall surfaces are covered with sound 
absorbing materials. Porous cardboard sheets, 
perforated acoustic tiles, gypsum boards, thick 
curtains etc. at the ceilings and at the walls are 
most convenient to reduce reverberation.   

8.7.3 Acoustics: 

The branch of physics which deals with 
the study of production, transmission and 
reception of sound is called acoustics. This is 
useful during the construction of theaters and 
auditorium. While designing an auditorium, 
proper care for the absorption and reflection of 
sound should be taken. Otherwise audience will 
not be able to hear the sound clearly. 

For proper acoustics in an auditorium the 
following conditions must be satisfied.

 1)  The sound should be heard sufficiently 
loudly at all the points in the auditorium. 
The surface behind the speaker should be 
parabolic with the speaker at its focus; so 
that the distribution of sound is uniform 
in the auditorium. Reflection of sound 
is helpful in maintaining good loudness 
through the entire auditorium.

 2)  Echoes and reverberation must be 
eliminated or reduced. Echoes can be 
reduced by making the reflecting surfaces 
more absorptive. Echo will be less if the 
auditorium is full.

 3)  Unnecessary focusing of sound should be 
avoided and there should not be any zone 
of poor audibility or region of silence. For 
that purpose curved surface of the wall or 
ceiling should be avoided.

 4) Echelon effect : It is due to the mixing of 
sound produced in the hall by the echoes 
of sound produced in front of regular 
structure like the stairs. To avoid this, stair 
type construction must be avoided in the 
hall.

 5) The auditorium should be sound-proof 
when closed, so that stray sound can not 
enter from outside.

 6) For proper acoustics no sound should be 
produced from the inside fittings, seats, 
etc. Instead of fans, air conditioners may 
be used. Soft action door closers should be 
used.   

Acoustics observed in nature 

The importance of acoustic principles goes 
far beyond human hearing. Several animals use 
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sound for navigation. 

 (a) Bats depends on sound rather than light 
to locate objects. So they can fly in 
total darkness of caves. They emit short 
ultrasonic pulses of frequency 30 kHz to 
150 kHz. The resulting echoes  give them 
information about location of the obstacle.

 (b)  Dolphins use an analogous system for 
underwater navigation. The frequencies 
are subsonic about 100 Hz. They can sense 
an object of about the size of a wavelength 
i.e., 1.4 m or larger.

Medical applications of acoustics 
 (a)  Shock waves which are high pressure high 

amplitude waves are used to split kidney 
stones into smaller pieces without invasive 
surgery. A shock wave is produced 
outside the body and is then focused by a 
reflector or acoustic lens so that as much 
of its energy as possible converges on the 
stone. When the resulting stresses in the 
stone exceeds its tensile strength, it breaks 
into small pieces which can be removed 
easily.

 (b)  Reflection of ultrasonic waves from 
regions in the interior of body is used for 
ultrasonic imaging. It is used for prenatal 
(before the birth) examination, detection 
of anamolous conditions like tumour etc 
and the study of heart valve action.

 (c)  At very high power level, ultrasound is 
selective destroyer of pathalogical tissues 
in treatment of arthritis and certain type of 
cancer.

Other applications of acoustics 
 (a) SONAR is an acronym for Sound 

Navigational Ranging. This is a technique 
for locating objects underwater by 
transmitting a pulse of ultrasonic sound 
and detecting the reflected pulse. The time 
delay between transmission of a pulse and 
the reception of reflected pulse indicates 
the depth of the object. This system is 
useful to measure motion and position of 
the submerged objects like submarine.

 (b)  Acoustic principle has important 
application to environmental problems 
like noise control. The design of quiet-

mass transit vehicle involves the study 
of generation and propagation of sound 
in the motor’s wheels and supporting 
structures.

 (c)  We can study properties of the Earth by 
measuring the reflected and refracted 
elastic waves passing through its interior. 
It is useful for geological studies to detect 
local anomalies like oil deposits etc. 

8.8 Qualities of sound:
Audible sound or human response to sound:

Whenever we talk about audible sound, 
what matters is how we perceive it. This is 
purely a subjective attribute of sound waves.

Major qualities of sound that are of our 
interest are (i) Pitch, (ii) Timbre or quality and 
(iii) Loudness.
(i) Pitch: 

This aspect refers to sharpness or shrillness 
of the sound. If the frequency of sound is 
increased, what we perceive is the increase in 
the pitch or we feel the sound to be sharper. 
Tone refers to the single frequency of that wave 
while a note may contain one or more than 
one tones. We use the words high pitch or high 
tones if frequency is higher. As sharpness is a 
subjective term, sentences like “sound of double 
frequency is doubly sharp” make no sense. 
Also, a high pitch sound need not be louder.
Tones of guitar are sharper than that of a base 
guitar, sound of tabla is sharper than that of 
a dagga, (in general) female sound is sharper 
than that of a male sound and so on.

For a sound amplifier (or equaliser) when 
we raise the treble knob (or treble Button), high 
frequencies are boosted and if we raise bass 
knob, low frequencies are boosted. 
(ii) Timbre (sound quality) 

During telephonic conversation with a 
friend, (mostly) you are able to know who is 
speaking at the other end even if you are not 
told about who is speaking. Quite often we say, 
“Couldn’t you recognise the voice?” The sound 
quality in this context is called timbre. Same 
song played on a guitar, a violin, a harmonium 
or a piano feel significantly different and we 
can easily identify that instrument. Quality 
of sound of any sound instrument (including 
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our vocal organ) depends upon the mixture of 
tones and overtones in the sound generated by 
that instrument. Even our own sound quality 
during morning (after we get up) and in the 
evening is different. It is drastically affected if 
we are suffering from cold or cough. Concept 
of overtones will be discussed during XIIth 

standard.
(iii) Loudness: 

Intensity of a wave is a measurable 
quantity which is proportional to square of 
the amplitude (I ∝ A2) and is measured in 
the (SI) unit of W/m2. Human perception of 
intensity of sound is loudness. Obviously, if 
intensity is more, loudness is more. The human 
response to intensity is not linear, i.e., a sound 
of double intensity is louder but not doubly 
loud. This is  also valid for brightness of light. 
In both cases, the response is approximately 
logarithmic. Using this property, the loudness 
(and brightness) can be measured. 

Under ideal conditions, for a perfectly 
healthy human ear, the least audible intensity is   
I

0 
= 10-12 W/m2. Loudness of a sound of intensity 

I, measured in the unit bel is given by 

 
L log

I

Ibel �
�

�
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�

�
�� 10

0    
--- (8.17)

Popular or commonly used unit for loudness is 
decibel. We know, 1 decimetre or 1 dm = 0.1m. 
Similarly, 1 decibel or 1 db = 0.1 bel. ∴1 bel 
= 10 db. Thus, loudness expressed in db is 10 
times the loudness in bel 
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0
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This corresponds to threshold of hearing 
For sound of 10 db,
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For sound of 20 db,
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and so on. 

Hence, loudness of 20 db sound is felt 
double that of 10 db, but its intensity is 10 
times that of the 10 db sound. Now, we feel 40 
db sound twice as loud as 20 db sound but its 
intensity is 100 times as that of 20 db sound 
and 10000 times that of 10 db sound. This is the 
power of logarithmic or exponential scale.

If we move away from a (practically) point 
source, the intensity of its sound varies inversely 

with square of the distance, i.e., I
r

∝
1
2 . 

Whenever you are using earphones or jam 
your mobile at your ear, the distance from the 
source is too small. Obviously, such a habit for 
a long time can affect your normal hearing. 

Example 8.5: When heard independently, two 
sound waves produce sensations of 60 db and 
55 db respectively. How much will the sensation 
be if those are sounded together, perfectly in 
phase?

Solution:  

L db log
I

I

I

I
I I1 10

1

0

1

0

6
1

6
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Similarly, I I2
5 5

010= .

As the waves combine perfectly in phase, 
the vector addition of their amplitudes will be 
given by A A A A A A A2

1 2
2

1
2

2
2

1 22� � � ��( )

As intensity is proportional to square of the
amplitude.  
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.

It is interesting to note that there is only a 
marginal increase in the loudness.
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  Table 8.2: Approximate Decibel Ratings of Some Audible Sounds

Source or description of noise Loudness, L
db

Effcet

Extremely loud 160
Immediate ear 
damage

Jet aeroplane, near 25 m 150 Rupture of eardrum

Auto horn, within a metre, Aircraft tale 
off, 60 m

110 Strongly painful

Diesel train, 30 m, Average factory 80

Highway traffic, 8 m 70 Uncomfortable

Conversion at a restaurant 60
Conversation at home 50
Quiet urban background sound 40

Quiet rural area 30 Virtual silence

Whispering of leaves, 5 m 20
Normal breathing 10

Threshold of hearing 0

According to the world health 
organisation a billion young people could be 
at risk of hearing loss due to unsafe listening 
practices. Among teenagers and young 
adults aged 12-35 years  (i) about 50% are 
exposed to unsafe levels of sound from use 
of personal audio devices and (ii) about 40% 
are exposed to potentially damaging sound 
levels at clubs, discotheques and bars.

Do you know ?8.9 Doppler Effect: 

Have you ever heard an approaching train 
and noticed distinct change in the pitch of the 
sound of its whistle, when it passes away ? 
Same thing similar happens when a listener 
moves towards or away from the stationary 
source of sound. Such a phenomenon was 
first identified in 1842 by Austrian physicist 
Christian Doppler (1803-1853) and is known 
as Doppler effect.

When a source of sound and a listener are 
in motion relative to each other the frequency 
of sound heard by listener is not the same as the 
frequency emitted by the source. 

Doppler effect is the apparent change 
in frequency of sound due to relative motion 
between the source and listener. Doppler effect 
is a wave phenomenon. It holds for sound 
waves and also for EM waves. But here we 
shall consider it for sound waves only.

The changes is frequency can be studied under 
3 different conditions: 
 1) When listener is stationary but source is 

moving.
 2) When listener is moving but source is 

stationary.
 3) When listener and source both are moving.

8.9.1 Source Moving and Listener Stationary:
Consider a source of sound S, moving away 

from a stationary listener L (called relative 
recede) with velocity vs. Speed of sound waves 
with respect to the medium is v which is always 
positive. Suppose the listener uses a detector for 
counting each wave crest that reaches it.

Initially (at t = 0), source which is at point 
S1 emits a crest when at distance d from the 
listener see Fig. 8.2 (a). This crest reaches the 
listener at time t

1
= d/v. Let T

0
 be the time period 

at which the waves are emitted. Thus, at t = 
T0 the source moves the distance = vs To and 
reaches the point S2. Distance of S2 from the 
listener is (d+vsTo). when at S2, the source emits 
second crest. This crest reaches the listener at

 
t =T

d T
2 0

0�
��

��
�
��

v

v
s

   
--- (8.19)
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Similarly at time pTo, the source emits its 
(p+1)th crest (where, p is an integer, p = 1,2,3,...). 
It reaches the listener at time  

t = pT +
d + p T

p+1 0
s 0v

v
�
��

�
��

Hence the listener’s detector counts p 
crests in the time interval 

t - t = pT +
d + p T

-
d

p+1 1 0
s 0v

v v
�
��

�
��

 

Hence the period of wave as recorded by 
the listener is 

T =
(t - t )

p
p+1 1                              or

T =
pT +

d + p T
-

d

p

T =T +
T

T =T 1+

T =T
+

0
s 0

0
s 0

0
s

0
s

v

v v

v

v
v

v

v v

v

�
��

�
��

�
��

�
��

��
��

�
��

�
�

�
�

�

�
�

�
�

�
�

�

�
�

1

T
=

1

T +

n = n
+

0 s

0
s

v

v v

v

v v
 --- (8.20)

where n is the frequency recorded by the listener 
and n

o 
is the frequency emitted by the source.

If source of sound is moving towards the 
listener with speed v

s
 (called relative approach), 

the second term from Eq. (8.18) onwards, will 
be negative (or will be subtracted).

Thus, in this case,  

n = n0

v

v - vs

�

�
�

�

�
�

 
  --- (8.21)

   

Fig. 8.2 (a): Doppler effect detected when 
the source is moving and listener is at rest 
in the medium.

   

Fig. 8.2 (b): Doppler effect detected when 
the listener is moving and source is at rest 
in the medium.

8.9.2 Listener Approaching a Stationary 
Source with Velocity v

L
:

Consider a listener approaching with 
velocity v

L
 towards a stationary source S as 

shown in Fig. 8.2 (b). Let the first wave be 
emitted by the source at t = 0, when the listener 
was at L

1
 at an initial distance d from the source. 

Let t
1
 be the instant when the listener receives 

this (wave), his position being L
2
.  During time 

t
1
, the listener travels distance v

L
t
1
 towards the 

stationary source. In this time, the sound wave 
travels distance d tL�� �v 1

 with speed v. 

� �
�

� �
�

t
d t

t
dL

L
1

1
1

v

v v v
����

  

Second wave is emitted by the source at t T= 0

= the time period of the waves emitted by the 
source. Let t2  be the instant when the listener 
receives second wave. During time t2 , the 
distance travelled by the listener is vLt2 . Thus, 
the distance to be travelled by the sound to 
reach the listener is then d tL- v 2 .

∴ Sound (second wave) travels this distance 

with speed v in time �
�d tLv

v
2

However, this time should be counted after T
0
, 

as the second wave was emitted at t T� �= 0 .

� � �
�

t T
d tL

2 0
2v

v     
� �

�
�

t
T d

L
2

0v

v v

Similarly, t T
d tL

3 0
32� �

� v

v
    � �

�
�

t
T d

L
3

02v

v v
Extending this argument to (p+1)th wave, we 
can write,

t pT
d t

p
L p

�
�� �

�
1 0

1v

v     
� �

�
��t

p T d
p

L
1

0v

v v

Time duration between instances of receiving 
successive waves is the observed or recorded 
period T.
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�

�
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�
�

��pT t t
p T d d p T

p
L L L

1 1
0 0v

v v v v

v

v v
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�
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�
�T T

L
0

v

v v     
--- (8.22)
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8.9.3 Both Source and Listener are Moving:

In general when both the source and 
listener are in motion, we can write the observed 
frequency 

n = n
v v

v v
L

s
0

��

�
�

�

�
�



   --- (8.24)

Where the upper signs (in both numerator and 
denominator) should be chosen during relative 
approach while lower signs should be chosen 
during relative recede. It must be remembered 
that ‘when you are deciding the sign for any 
one of these, the other should be considered to 
be at rest’.

Illustration:

Consider an observer or listener and a 
source moving with respective velocities v

L
 and 

v
S
 along the same direction. In this case, listener 

is approaching the source with v
L
 (irrespective 

of whether source is moving or not). Thus, the 
upper, i.e.,  positive sign, should be chosen 
for numerator. However, the source is moving 
with v

S
 away form the listener irrespective of 

listener's motion. Thus the lower sign in the 
denominator which is positive has to be chosen. 

 

� �
�

�
�

�

�
�n no

v + v

v + v
L

s  
  --- (8.25)

Case (I) If |v
L
| = |v

s
|, n = n

o
. Thus there is no 

Doppler shift as there is no relative motion, 
even if both are moving.

Case (II) If  |v
L
| > |v

s
|, numerator will be greater, 

n > n
o
. This is because there is relative approach 

as the listener approaches the source faster and 
the source is receding at a slower rate.

Case (III) If |v
L
| < |v

s
|, n < n

o
 as now there is 

relative recede (source recedes faster, listener 
approaches slowly).

8.9.4 Common Properties between Doppler 
Effect of Sound and Light:

 A)  Wherever there is relative motion between 
listener (or observer) and source (of sound 
or light waves), the recorded frequency is 
different than the emitted frequency. 

 B)  Recorded frequency is higher (than emitted 
frequency), if there is relative approach.

 C)  Recorded frequency is lower, if there is 
relative recede.

 D)  If v
L
 or v

s
 are much smaller then wave 

speed (speed of sound or light) we can use 
v

r
 as relative velocity. In this case, using 

Eq. (8.24) 

   

� �n

n
r

 

v

v

�
�  

  --- (8.26)

  where ∆n is Doppler shift or change in the 
recorded frequency, i.e., |n - n

o
| and ∆l is 

the recorded change in wavelength.

   

�
�

� � ��
�
�

�
�
�

n n

n

n n

r

r

0

0 1



v

v
v

v   --- (8.27)

  Once again upper sign is to be used during 
relative approach while lower sign is to be 
used during relative recede.  

 E)  If velocities of source and observer 
(listener) are not along the same line 
their respective components along the 
line joining them should be chosen for 
longitudinal Doppler effect and the same 
mathematical treatment is applicable.

8.9.5  Major Differences between Doppler 
Effects of Sound and Light:

 A)  As the speed of light is absolute, only 
relative velocity between the observer and 
the source matters, i.e., who is in motion is 
not relevant.

 B)  Classical and relativistic Doppler effects 
are different in the case of light, while in 
case of sound, it is only classical.
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 C)  For obtaining exact Doppler shift for sound 
waves, it is absolutely important to know 
who is in motion. 

 D)  If wind is present, its velocity alters the 
speed of sound and hence affects the 
Doppler shift. In this case, component of 
the wind velocity (v

w
) is chosen along the 

line joining source and observer. This is to 
be algebraically added with the velocity of 
sound. Hence 'v' is to be replaced by (v ± 
v

w
) in all the above expressions. Positive 

sign to be used if v and v
w
 are along 

the same direction (remember that v is 
always positive and always from source to 
listener). Negative sign is to be used if v 
and v

w
 are oppositely directed.

Example 8.6: A rocket is moving at a speed of 
220 m/s towards a stationary target. It emits a 
wave of frequency 1200 Hz. Some of the sound 
reaching the target gets reflected back to the 
rocket as an echo. Calculate (1) The frequency 
of sound detected by the target and (2) The 
frequency of echo detected by rocket (velocity 
of sound= 330 m/s.)

Solution: Given, target stationary, i.e., 

 vL = 0, vs = 220 m/s, v = 330 m/s 

 n0 = 1200 Hz 

To find the frequency of sound detected by 
the target we have to used Eq. (8.25)

n = n
v

v v

n 1200 

n 3600 Hz

s
0

330

330 220

�
�

�
�

�

�
�

�
�

�
��

�
��

�

The frequency of sound detected by the 
target = 3600 Hz.

When echo is heard by rocket’s detector, 
target is considered as source

 ... vs = 0

The frequency of sound emitted by the source 
(i.e. target) is n

0
 = 3600 Hz, and the frequency 

detected by rocket is n'. Now listener is 
approaching the source and so we have to use.

 

n' = n
v + v

v
L

n 3600 

n 6000 Hz

�
��

�
��

�
��

�
��

�
�

�

330 220

330

The frequency of echo detected by rocket = 
6000 Hz

Example 8.7: A bat, flying at velocity V
B
 = 12.5 

m/s, is followed by a car running at velocity  
V

C 
= 50 m/s. Actual directions of the velocities 

of the car and the bat are as shown in the figure 
below, both being in the same horizontal plane 
(the plane of the figure). To detect the car, the 
bat radiates ultrasonic waves of frequency  
36 kHz. Speed of sound at surrounding 
temperature is 350 m/s.

There is an ultrasonic frequency detector 
fitted in the car. Calculate the frequency 
recorded by this detector.

The ultrasonic waves radiated by the bat 
are reflected by the car. The bat detects these 
waves and from the detected frequency, it 
knows about the speed of the car. Calculate the 
frequency of the reflected waves as detected by 
the bat. (sin 37° = cos 53° ≈ 0.6, sin 53° = cos 
37° ≈ 0.8)

Solution: As shown in the figure below, the 
components of velocities of the bat and the car, 
along the line joining them, are

V and

V

C

B

cos �m�s

cos �m�s

53 50 0 6 30

37 12 5 0 8 10

0 1

0 1

� � �

� � �

�

�

. � �

. . .

These should be used while calculating the 
doppler shifted frequencies.
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Doppler shifted frequency, n n L

s

�
��

�
�

�

�
�0

v v

v v
; 

upper signs to be used during approach, lower 
signs during recede.

Part I: Frequency radiated by the bat n
0
 = 36 

×103 Hz, Frequency detected by the detector in 
the car = n = ? 

In this case, bat is the source which is moving 
away from the car (receding) while the detector 
in the car is the listener, who is approaching the 
source (bat). v Vs B= =cos37 100  m/s and

v VL C= =cos 53 300 m/s

The source (bat) is receding, while the listener 

(car) is approaching � �
�
�

�

�
�

�

�
�n n L

s
0

v v

v v
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n 36 10
350 30

350 10

38 10

3

3       �Hz = 38 kHz

Part II: Reflected frequency, as detected by 
the bat: Frequency reflected by the car is the 
Doppler shifted frequency as detected at the 
car. Thus, this time, the car is the source with 

emitted frequency n0
338 10� � �Hz , n =�?

Car, the source, is approaching the listener 
(bat). 

Thus, v vS C= = cos 53 300  m/s

Thus, v vL B= =cos 37 100  m/s

Now bat-the listener is receding while car the 

source is approaching � �
�
�

�

�
�

�

�
�n n L

s
0

v v

v v
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38 10
34
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40 375

3

3     
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3 �

.
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Hz k     

  https://hyperphysics.phys-astr.gsu.edu/
hbase/hframe.html

 

Internet my friend

1. Choose the correct alternatives
 i)  A sound carried by air from a sitar to a 

listener is a wave of following type.
  (A) Longitudinal stationary     

(B)Transverse progressive 
  (C) Transverse stationary    

(D) Longitudinal progressive
 ii)  When sound waves travel from air to water, 

which of these remains constant ?
  (A) Velocity  (B) Frequency 
  (C) Wavelength  (D) All of above
 iii)  The Laplace’s correction in the expression 

for velocity of sound given by Newton is 
needed because sound waves  

  (A) are longitudinal  
  (B) propagate isothermally
  (C) propagate adiabatically  
  (D) are of long wavelength
 iv)  Speed of sound is maximum in 
  (A) air  (B) water   
  (C) vacuum (D) solid
 v)  The walls of the hall built for music 

concerns should 
   (A) amplify sound (B) reflect sound
  (C) transmit sound  (D) absorb sound 
2. Answer briefly.
 i) Wave motion is doubly periodic. Explain.
 ii)  What is Doppler effect?
 iii)  Describe a transverse wave.
 iv)  Define a longitudinal wave.
 v)  State Newton’s formula for velocity of 

sound.
 vi) What is the effect of pressure on velocity 

of sound?
 vii) What is the effect of humidity of air on 

velocity of sound?
 viii)  What do you mean by an echo?
 ix) State any two applications of acoustics.
 x)  Define amplitude and wavelength of a 

wave.
 xi)  Draw a wave and indicate points which 

are (i) in phase (ii) out of phase (iii) 
have a phase difference of π/2.  

Exercises Exercises
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 xii)  Define the relation between velocity, 
wavelength and frequency of wave.

 xiii) State and explain principle of 
   superposition of waves.
 xiv) State the expression for apparent 

frequency when source of sound and 
listener are 

  i) moving towards each other
  ii) moving away from each other
 xv)  State the expression for apparent 

frequency when source is stationary and 
listener is

  1) moving towards the source
  2) moving away from the source
 xvi)  State the expression for apparent 

frequency when listener is stationary 
and source is.

  i) moving towards the listener
  ii) moving away from the listener 
 xvii)  Explain what is meant by phase of a 

wave.
 xviii)  Define progressive wave. State any four 

properties. 
 xix)  Distinguish between traverse waves and 

longitudinal waves.
 xx)  Explain Newtons formula for velocity 

of sound. What is its limitation?
3. Solve the following problems. 
 i)  A certain sound wave in air has a speed 

340 m/s and wavelength 1.7 m for this  
wave, calculate 

   a) the frequency  b) the period. 
              [Ans a) 200 Hz, b) 0.005s]
 ii) A tuning fork of frequency 170 Hz 

produces sound waves of wavelength 2 
m. Calculate speed of sound.

                [Ans: 340 m/s] 
 iii)  An echo-sounder in a fishing boat 

receives an echo from a shoal of fish 
0.45 s after it was sent. If the speed of 
sound in water is 1500 m/s, how deep is 
the shoal? 

                    [Ans : 337.5 m]
 iv)  A girl stands 170 m away from a high 

wall and claps her hands at a steady rate 
so that each clap coincides with the echo 
of the one before. 

  a) If she makes 60 claps in 1 minute, 

what value should be the speed of sound 
in air?

  b) Now, she moves to another location 
and finds that she should now make 
45 claps in 1 minute to coincide with 
successive echoes. Calculate her distance 
for the new position from the wall.

             [Ans: a) 340 m/s b) 255 m]
 v)  Sound wave A has period 0.015 s, sound 

wave B has period 0.025. Which sound 
has greater frequency? 

         [Ans : A]

 vii) At what temperature will the speed of 
sound in air be 1.75 times its speed at 
N.T.P? 

          [Ans: 836.06 K = 563.06 °C]

 viii) A man standing between 2 parallel eliffs 
fires a gun. He hearns two echos one 
after 3 seconds and other after 5 seconds. 
The separation between the two cliffs is 
1360 m, what is the speed of sound?  

                       [Ans:340m/s]

 ix) If the velocity of sound in air at a given 
place on two different days of a given 
week are in the ratio of 1:1.1. Assuming 
the temperatures on the two days to be 
same what quantitative conclusion can 
your draw about the condition on the 
two days? 

    [Ans: Air is moist on one day 

    and ρ
dry  

= 1.12 ρ
dry  

= 1.21 ρ
moist 

]

 x) A  police car travels towards a stationary 
observer at a speed of 15 m/s. The siren 
on the car emits a sound of frequency 250 
Hz. Calculate the recorded frequency. 
The speed of sound is 340 m/s. 

                [Ans : 261.54 Hz]
 xi) The sound emitted from the siren of an 

ambulance has frequency of 1500 Hz. 
The speed of sound is 340 m/s. Calculate 
the difference in frequencies heard by a 
stationary observer if the ambulance 
initially travels towards and then away 
from the observer at a speed of 30 m/s.  
              [Ans : 266.79 Hz]

 
***
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9.1 Introduction:

“See it to believe it” is a popular saying. 
In order to see, we need light. What exactly 
is light and how are we able to see anything? 
We will explore it in this and next standard. 
We know that acoustics is the term used for 
science of sound. Similarly, optics is the term 
used for science of light. There is a difference 
in the nature of sound waves and light waves 
which you have seen in chapter 8 and will learn 
in chapter 13.

9.2 Nature of light:

Earlier, light was considered to be that form 
of radiant energy which makes objects visible 
due to stimulation of retina of the eye. It is a 
form of energy that propagates in the presence 
or absence of a medium, which we now call 
waves. At the beginning of the 20th century, it 
was proved that these are electromagnetic (EM) 
waves. Later, using quantum theory, particle 
nature of light was established. According to 
this, photons are energy carrier particles. By an 
experiment using countable number of photons, 
it is now an established fact that light possesses 
dual nature. In simple words we can say that  
light consists of energy carrier photons guided 
by the rules of EM waves. In vacuum, these 
waves (or photons) travel with a speed of  

In  a  material  medium,  the  speed  of  EM

 waves is given by              ,

where permittivity ε and permeability µ  
are constants  which depend on the electric 
and magnetic properties of the medium. 

The ratio n
c

=
v

 is called the absolute 
refractive index and is the property of the 
medium.

 1. What are laws of reflection and refraction? 
 2. What is dispersion of light?
 3. What is refractive index? 

Can you recall?

Optics9. 

c = 299792458 m s-1 According to Einstein’s 
special theory of relativity, this is the maximum 
possible speed for any object. For practical 
purposes we write it as c = 3×108 m s-1.

Commonly observed phenomena 
concerning light can be broadly split into three 
categories.  

 (I)  Ray optics or geometrical optics: A 
particular direction of propagation of 
energy from a source of light is called 
a ray of light. We use ray optics for 
understanding phenomena like reflection, 
refraction, double refraction, total 
internal reflection, etc.  

 (II) Wave optics or physical optics: For 
explaining phenomena like interference, 
diffraction, polarization, Doppler effect, 
etc., we consider light energy to be in the 
form of EM waves. Wave theory will be 
further discussed in XIIth standard.

 (III) Particle nature of light: Phenomena like 
photoelectric effect, emission of spectral 
lines, Compton effect, etc. cannot be 
explained by using classical wave theory. 
These involve the interaction of light with 
matter. For such phenomena we have to 
use quantum nature of light. Quantum 
nature of light will be discussed in XIIth 

standard.

9.3 Ray optics or geometrical optics:

In geometrical optics, we mainly study 
image formation by mirrors, lenses and prisms. 
It is based on four fundamental laws/ principles 
which you have learnt in earlier classes.

 (i) Light travels in a straight line in a 
homogeneous and isotropic medium. 
Homogeneous means that the properties 
of the medium are same every where in 
the medium and isotropic means that the 

 4. What is total internal reflection?
 5. How does light refract at a curved surface? 
 6. How does a rainbow form?
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properties are the same in all directions.

(ii) Two or more rays can intersect at a point 
without affecting their paths beyond that 
point.

(iii)  Laws of reflection: 

 (a)  Reflected ray lies in the plane formed by 
incident ray and the normal drawn at the 
point of incidence; and the two rays are on 
either side of the normal.

 (b) Angles of incidence and reflection are 
equal. 

 (iv) Laws of refraction: These apply at the 
boundary between two media

 (a)  Refracted ray lies in the plane formed by 
incident ray and the normal drawn at the 
point of incidence; and the two rays are on 
either side of the normal.

 (b) Angle of incidence  (θ 1
 in a medium of  

refractive index n
1
) and angle of refraction 

(θ
2
 in medium of refractive index n

2
) are 

related by Snell’s law, given by 

  ( n 1
)sinθ 1 =  

( n 2
)sin θ 2

.

Example 9.1: Thickness of the glass of a 
spectacle is 2 mm and refractive index of its 
glass is 1.5. Calculate time taken by light to 
cross this thickness. Express your answer with 
the most convenient prefix attached to the unit 
‘second’.

Solution:

Speed of light in vacuum, c = 3×108m/s 

n
glass

 = 10.5

∴ Speed of light in glass =

 

c

nglass

�
�

� �
3 10

1 5
2 10

8
8

.
m / s

 

Distance to be travelled by light in glass,

s = 2 mm = 2×10-3 m

∴Time t required by light to travel this distance,

t
s

glass

� �
�
�

�
�

�

v
s

2 10

2 10
10

3

8
11

Most convenient prefix to express this small 
time is pico (p) = 10-12 
∴ t = 10 × 10-12 = 10 ps   
9.3.1 Cartesian sign convention:

While using geometrical optics it is 
necessary to use some sign convention. The 
relation between only the numerical values of 
u, v and f for a spherical mirror (or for a lens) 
will be different for different positions of the 
object and the type of mirror. Here u and v are 
the distances of object and image respectively 
from the optical center, and f is the focal 
length. Properly used suitable sign convention 
enables us to use the same formula for all 
different particular cases. Thus, while deriving 
a formula and also while using the formula it 
is necessary to use the same sign convention. 
Most convenient sign convention is Cartesian 
sign convention as it is analogous to coordinate 
geometry. According to this sign convention, 
(Fig. 9.1):

 
Fig. 9.1 Cartesian sign convention. 

 i)  All distances are measured from the optical 
center or pole. For most of the optical 
objects such as spherical mirrors, thin 
lenses, etc., the optical centers coincides 
with their geometrical centers.

Interestingly, all the four laws stated 
above can be derived from a single 
principle called Fermat’s (pronounced 
''Ferma'') principle. It says that “While 
travelling from one point to another by one 
or more reflections or refractions, a ray of 
light always chooses the path of least 
time”.

 Ideally it is the path of extreme time, 
i.e., path of minimum or maximum time. 
We strongly recommend you to go through 
a suitable reference book that will give 
you the proof of i = r during reflection and 
Snell’s law during refraction using 
Fermat’s principle.

Do you know ?
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 ii)  Figures should be drawn in such a way 
that the incident rays travel from left to 
right. A diverging beam of incident rays 
corresponds to a real point object (Fig. 9.2 
(a)), a converging beam of incident rays 
corresponds to a virtual object (Fig. 9.2 
(b)) and a parallel beam corresponds to an 
object at infinity. Thus, a real object should 
be shown to the left of pole (Fig. 9.2 (a)) 
and virtual object or image to the right of 
pole. (Fig. 9.2 (b)) 

Fig. 9.2: (a) Diverging beam from a real 
object

Fig. 9.2: (b) Converging beam towards a 
virtual object.

 iii) x-axis can be conveniently chosen as the 
principal axis with origin at the pole.

 iv) Distances to the left of the pole are 
negative and those to the right of the pole 
are positive.

 v) Distances above the principal axis (x-axis) 
are positive while those below it are 
negative. 

Unless specially mentioned, we shall always 
consider objects to be real for further 
discussion.

9.4 Reflection:

9.4.1 Reflection from a plane surface:

 a)  If the object is in front of a plane reflecting 
surface, the image is virtual and laterally 
inverted. It is of the same size as that of the 
object and at the same distance as that of 
object but on the other side of the reflecting 
surface. 

 b)  If we are standing on the bank of a still 
water body and look for our image formed 
by water (or if we are standing on a plane 
mirror and look for our image formed by 
the mirror), the image is laterally reversed, 
of the same size and on the other side.

 c)  If an object is kept between two plane 
mirrors inclined at an angle θ  (like in a 
kaleidoscope), a number of images are 
formed due to multiple reflections from 
both the mirrors. Exact number of images 
depends upon the angle between the mirrors 
and where exactly the object is kept. It can 
be obtained as follows (Table 9.1):

Calculate n �
360

�
Let N be the number of images seen.

 (I) If n is an even integer, N� �� �n 1 , 
irrespective of where the object is. 

 (II)  If n is an odd integer and object is exactly 
on the angle bisector, N � �� �n 1 .

 (III) If n is an odd integer and object is off the 
angle bisector, N =  n

 (IV) If n is not an integer, N =  m, where m is 
integral part of n.

Table 9.1 

Angle 
θ 0

 
n �

360

�
Position of 

the object
N

120 3
On angle 
bisector

2

120 3
Off angle 
bisector

3

110 3.28 Anywhere 3

90 4 Anywhere 3

80 4.5 Anywhere 4

72 5
On angle 
bisector

4

72 5
Off angle 
bisector

5

60 6 Anywhere 5

50 7.2 Anywhere 7
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(concave or convex) mirror is related to object 
distance and image distance as

 1 1 1

f u
� ��

v
    --- (9.1)

Fig. 9.3 (a): Parallel rays incident from left 
appear to be diverging from F, lying on the 
positive side of origin (pole).

Fig. 9.3 (b): Parallel rays incident from 
left appear to converge at F, lying on the 
negative side of origin (pole).

By a small mirror we mean its aperture 
(diameter) is much smaller (at least one tenth) 
than the values of u, v and f.

Focal power: Converging or diverging ability 
of a lens or of a mirror is defined as its focal 

power. It is measured as P
f

=
1

.

In SI units, it is measured as diopter. 
� � � � �1 1 1� � dioptre D m

Lateral magnification: Ratio of linear size 
of an image to that of the object, measured 
perpendicular to the principal axis, is defined as 

the lateral magnification m
u

=
v

 
For any position of the object, a convex mirror 

Example 9.2: A small object is kept 
symmetrically between two plane mirrors 
inclined at 38°. This angle is now gradually 
increased to 41°, the object being symmetrical 
all the time. Determine the number of images 
visible during the process.

Solution: According to the convention used in 
the table above, 

� � � � �38
360

38
9 470 n . �

 

∴ N = 9. This is valid till the angle is 40° as the 
object is kept symmetrically

Beyond 40°, n < 9 and it decreases upto   

 
360

41
= 8.78

. 

Hence now onwards there will be 8 images till 
41°.

9.4.2 Reflection from curved mirrors: 

In order to focus a parallel or divergent 
beam by reflection, we need curved mirrors. 
You might have noticed that reflecting mirrors 
for a torch or headlights, rear view mirrors of 
vehicles are not plane but concave or convex. 
Mirrors for a search light are parabolic. We 
shall restrict ourselves to spherical mirrors only 
which can be studied using simple mathematics. 
Such mirrors are parts of a sphere polished from 
outside (convex) or from inside (concave).  

Radius of the sphere of which a mirror 
is a part is called as radius of curvature (R) 
of the mirror. Only for spherical mirrors, half 
of radius of curvature is focal length of the 

mirror f
R

��
�
�

�
�
�2  . For a concave mirror it is 

the distance at which parallel incident rays 
converge. For a convex mirror, it is the distance 
from where parallel rays appear to be diverging 
after reflection. According to sign convention, 
the incident rays are from left to right and they 
should face the polished surface of the mirror. 
Thus, focal length of a convex mirror is positive 
(Fig 9.3 (a)) while that of a concave mirror is 
negative (Fig. 9.3 (b)).

Relation between f, u and v: 

For a point object or for a small finite 
object, the focal length of a small spherical 
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always forms virtual, erect and diminished 
image, m < 1. In the case of a concave mirror 
it depends upon the position of the object. 
Following Table 9.2 will help you refresh your 
knowledge.

Table 9.2

Concave mirror (f negative)

Position of 
object

Position of 
image

Real(R) 
or 

Virtual
(V)

Lateral 
magnifi-
-cation

u =  ∞ v f= R m =  0
u f> 2 2 f v f> > R m < 1
u =  2f v  =  2f R m =  1
2 f u f> > v f> 2 R m > 1
u f= v � � R m � �

u f< v u> V m > 1

Example 9.3: A thin pencil of length 20 cm 
is kept along the principal axis of a concave 
mirror of curvature 30 cm. Nearest end of the 
pencil is 20 cm from the pole of the mirror. 
What will be the size of image of the pencil?

Solution: R = 30 cm  

     f = R/2 =-15 cm ... (Concave mirror) 

 
1 1 1

f u
� ��

v
For nearest end, u = u

1
 = - 20 cm . Let the image 

distance be v
1
 

�
�

� �
�

� � �
1

15

1 1

20
60

1
1� ��� �

v
v cm

 
Nearest end is at 20 cm and pencil itself is 20 
cm long. Hence farthest end is 20 + 20 =  40 
cm � �u2  
Let the image distance be v

2

       ��
� �

�
� � �

1

15

1 1

40
24

2
2� ��� �

v
v cm�

∴ Length of the image = 60 -24 = 36 cm. 
Defects or aberration of images: The theory 
of image formation by mirrors or lenses, 
and the formulae that we have used such as  

f
R

=
2

 or 
1 1 1

f u
� ��

v
 etc. 

are based on the following assumptions: (i) 
Objects and images are situated close to the 
principal axis.

(ii) Rays diverging from the objects are confined 

to a cone of very small angle.

(iii) If there is a parallel beam of rays, it is 
paraxial, i.e., parallel and close to the principal 
axis.

However, in reality, these assumptions do 
not always hold good. This results into distorted 
or defective image. Commonly occurring 
defects are spherical aberration, coma, 
astigmatism, curvature, distortion. Except 
spherical aberration, all the other arise due to 
beams of rays inclined to principal axis. These 
are not discussed here.

Spherical aberration: As mentioned 

earlier, the relation f
R

��
�
�

�
�
�2

 giving a single 
 
point focus is applicable only for small aperture 
spherical mirrors and for paraxial rays. In reality, 
when the rays are farther from the principal axis, 
the focus gradually shifts towards pole (Fig. 
9.4). This phenomenon (defect) arises due to 
spherical shape of the reflecting surface, hence 
called  as spherical aberration. It results into a 
unsharp (fuzzy) image with unclear boundaries.

Fig. 9.4: Spherical aberration for curved 
mirrors.

The distance between F
M

 and F
P
 (Fig. 

9.4) is measured as the longitudinal spherical 
aberration. If there is no spherical aberration, 
we get a single point image on a screen placed 
perpendicular to the principal axis at that 
location, for a beam of incident rays parallel to 
the axis. In the presence of spherical aberration, 
no such point is possible at any position of the 
screen and the image is always a circle. At a 
particular location of the screen, the diameter of 
this circle is minimum. This is called the circle 
of least confusion. In the figures it is across 
AB. Radius of this circle is transverse spherical 
aberration.
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Why does a parabolic mirror not have 
spherical aberration?

Parabola is a geometrical shape drawn 
in such a way that every point on it is 
equidistant from a straight line and from a 
point. Figure 9.5 shows a parabola. Points A, 
B, C, … on it are equidistant from line RS 
(called directrix) and point F (called focus). 
Hence A′A = AF, B′B = BF, C′C = CF, …. 

RR

SS

Fig. 9.5: Single focus for parabolic mirror.
If rays of equal optical path converge 

at a point, that point is the location of real 
image corresponding to that beam of rays. 

Paths A″AA′, B″BB′. C″CC′, etc., 
are equal paths in the absence of mirror. 
If the parabola ABC… is a mirror then 
the respective optical paths will be A″AF, 
B″BF, C″CF, … and from the definition of 
parabola, these are also equal. Thus, F is the 
single point focus for entire beam parallel to 
the axis with NO spherical aberration. 

Do you know ?

In the case of curved mirrors, this defect 
can be completely eliminated by using a 
parabolic mirror. Hence surfaces of mirrors 
used in a search light, torch, headlight of a car, 
telescopes, etc., are parabolic and not spherical.

9.5 Refraction: 
Being an EM wave, the properties of light 

(speed, wavelength, direction of propagation, 
etc.) depend upon the medium through which 
it is traveling. If a ray of light comes to an 
interface between two media and enters into 
another medium of different refractive index, 
it changes itself suitable to that medium. This 
phenomenon is defined as refraction of light. 
The extent to which these properties change is 
decided by the index of refraction, 'n'. 

 (a) Logic behind the convention 1n
2
 : Letter 

n is the symbol for refractive index, 
n2  corresponds to refractive index of 
medium 2 and 1n

2
 indicates that it is 

with respect to medium 1. In this case, 
light travels from medium 1 to 2 so we 
need to discuss medium 2 in context to 
medium 1.

 (b) Dictionary meaning of the word refract 
is to change the path`. However, in 
context of Physics, we should be more 
specific. We use the word deviate for 
changing the path. During refraction at 
normal incidence, there is no change 
in path. Thus, there is refraction but 
no deviation. Deviation is associated 
with refraction only during oblique 
incidence. Deviation or changing the 
path or bending is associated with 
many phenomena such as reflection, 
diffraction, scattering, gravitational 
bending due to a massive object, etc.

Do you know ?

Absolute refractive index: 

Absolute refractive index of a medium is 
defined as the ratio of speed of light in vacuum 
to that in the given medium.

n
c

=
v  where c and v are respective speeds 

of light in vacuum and in the medium. As n 
is the ratio of same physical quantities, it is a 
unitless and dimensionless physical quantity.

For any material medium (including 
air) n > 1, i.e., light travels fastest in vacuum 
than in any material medium. Medium having 
greater value of n is called optically denser. An 
optically denser medium need not be physically 
denser, e.g., many oils are optically denser than 
water but water is physically denser than them.

Relative refractive index: 

Refractive index of medium 2 with respect 
to medium 1 is defined as the ratio of speed of 
light v

1
 in medium 1 to its speed v

2
 in medium 

2. Thus, 1
2

2

1

n
n

n
= =

v

v
1

2
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Illustrations of refraction: 1) When seen from 
outside, the bottom of a water body appears to 
be raised. This is due to refraction at the plane 
surface of water. In this case,     

n
Real depth

apparent depthwater ≅
   

 

This relation holds good for a plane 
parallel transparent slab also as shown below. 

Figure 9.6 shows a plane parallel slab of a 
transparent medium of refractive index n. A 
point object O at real depth R appears to be at 
I at apparent depth A, when seen from outside 
(air). Incident rays OA (traveling undeviated) 
and OB (deviating along BC) are used to locate 
the image. 

Fig. 9.6: Real and apparent depth.
By considering i and r to be small, we can write,

tan sin tanr
x

A
r i

x

R
i� � � � � � � � � � � �and sin  

� �
� �
� �

�

�
�
�

�
�
�

�
�
�

�
�
�

� �n
r

i

x
A
x
R

R

A

sin

sin

Real�depth

Apparent�deptth
 

2) A stick or pencil kept obliquely in a glass 
containing water appears broken as its part in 
water appears to be raised.

Example 9. 4: A crane flying 6 m above a still, 
clear water lake sees a fish underwater. For the 
crane, the fish appears to be 6 cm below the 
water surface. How much deep should the crane 
immerse its beak to pick that fish?

For the fish, how much above the water surface 
does the crane appear? Refractive index of 
water =  4/3.

Solution: For crane, apparent depth of the fish 
is 6 cm and real depth is to be determined.

For fish, real depth (height, in this case) of the 
crane is 6 m and apparent depth (height) is to 
be determined.

  

For crane, it is water with respect to air as real 
depth is in water and apparent depth is as seen 
from air  

      

� � � � � �n
R

A

R
R

4

3 6
8���� �cm

For fish, it is air with respect to water as the 
real height is in air and seen from water.

     � � � � � �n
R

A A
A

3

4

6
8���� �m

9.6 Total internal reflection: 

Fig. 9.7: Total internal reflection.

Figure 9.7 shows refraction of light 
emerging from a denser medium into a rarer 
medium for various angles of incidence. 
The angles of refraction in the rarer medium 
are larger than the corresponding angles of 
incidence. At a particular  angle of incidence i

c
 

in the denser medium, the corresponding angle 
of refraction in the rarer medium is 900. For 
angles of incidence greater than i

c
 , the angle 

of refraction become larger than 900 and the ray 
does not enter into rarer medium at all but is 
reflected totally into the denser medium. This is 

Small angle approximation: For small angles, 
expressed in radian, sin � � �� � tan . 
For example, for

 
In this case the error is 0 5236 0 5. . �� � 0.0236 in 
0.5, which is 4.72 %. 
For practical purposes we consider angles less 
than 100 where the error in using sin � ��  is 
less than 0.51 %. (Even for 600, it is still 15.7 %)
It is left to you to verify that this is almost 
equally valid for tanθ  till 200 only.
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Fig. 9.8 (a): Optical fibre construction.

Fig. 9.8 (b): Optical fibre working.

An optical fibre essentially consists of an 
extremely thin (slightly thicker than a human 
hair), transparent, flexible core surrounded 
by optically rarer (smaller refractive index), 
flexible cover called cladding. This system is 
coated by a buffer and a jacket for protection. 
Entire thickness of the fibre is less than half a 
mm. (Fig. 9.8(a)). Number of such fibres may 
be packed together in an outer cover.

An optical signal (ray) entering the core 
suffers multiple total internal reflections (Fig. 
9.8 (b)) and emerges after several kilometers 
with extremely low loss travelling with highest 
possible speed in that material ( ~ 2,00,000 
km/s for glass). Some of the advantages of 
optic fibre communication are listed below.

 (a) Broad bandwidth (frequency range): For 
TV signals, a single optical fibre can 
carry over 90000 channels (independent 
signals).

 (b) Immune to EM interference: Being 
electrically non-conductive, it is not able 
to pick up nearby EM signals.

 (c) Low attenuation loss: The loss is lower 
than 0.2 dB/km so that a single long cable 
can be used for several kilometers.

 (d) Electrical insulator: No issue with ground 
loops of metal wires or lightning.

 (e) Theft prevention: It is does not use copper 
or other expensive material.

 (f) Security of information: Internal damage is 
most unlikely.

(ii) Prism binoculars: Binoculars using 
only two cylinders have a limitation of field 
of view as the distance between the two 
cylinders can’t be greater than that between 
the two eyes. This limitation can be overcome 

In Physics the word critical is used when 
certain phenomena are not applicable or 
more than one phenomenon are applicable. 
Some examples are as follows.
 (i)  In case of total internal reflection, the 

phenomenon of reversibility of light 
is not applicable at critical angle and 
refraction is possible only for angles of 
incidence in the denser medium smaller 
than the critical angle. 

 (ii) At the critical temperature, a substance 
coexists into all the three states; 
solid, liquid and gas. At all the other 
temperatures, only two states are 
simultaneously possible. 

 (iii) For liquids, streamline flow is possible 
till critical velocity is achieved. 
At critical velocity it can be either 
streamline or turbulent.

Do you know ?

called total internal reflection. In general, there 
is always partial reflection and partial refraction 
at the interface. During total internal reflection 
TIR, it is total reflection and no refraction. The 
corresponding angle of incidence in the denser 
medium is greater than or equal to the critical 
angle. 

Critical angle for a pair of refracting media 
can be defined as that angle of incidence in the 
denser medium for which the angle of refraction 
in the rarer medium is 90°. 

Let µ be the relative refractive index 
of denser medium with respect to the rarer. 
Applying Snell’s law at the critical angle of 

incidence, iC , we can write sin ( )c i �
1

�
 as,  

                         (µ)sin (i
c
) = (1) sin 90° 

For commonly used glasses of

µ = 1.5, i
c
 = 41° 49′ ≅ 42° and for water of

� �
4

3
, i

c
 = 48° 35′ (Both, with respect to air)

9.6.1 Applications of total internal reflection: 

(i) Optical fibre: Though little costly for initial 
set up, optic fibre communication is undoubtedly 
the most effective way of telecommunication 
by way of EM waves. 
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by using two right angled glass prisms  
( iC ~ 420 ) used for total internal reflection as 
shown in the Fig. 9.9. Total internal reflections 
occur inside isosceles, right angled prisms. 

Fig. 9.9: Prism binoculars
(iii) Periscope: It is used to see the objects on 
the surface of a water body from inside water. 
The rays of light should be reflected twice 
through right angle. Reflections are similar 
to those in the binoculars (Fig 9.10) and total 
internal reflections occur inside isosceles, right 
angled prisms.

Fig. 9.10: Periscope.
Example 9.5: There is a tiny LED bulb at the 
center of the bottom of a cylindrical vessel of 
diameter 6 cm. Height of the vessel is 4 cm. The 
beaker is filled completely with an optically 
dense liquid. The bulb is visible from any 
inclined position but just visible if seen along 
the edge of the beaker. Determine refractive 
index of the liquid.

Solution: As seen from the accompanying 
figure, if the bulb is just visible from the edge, 
angle of incidence in the liquid (at the edge) 
must be the critical angle of incidence, i

C

From the dimensions given, 

tan ( ) sin ( )
sin

sin( )
liquid  c c

c

i i
i

� � � � �
�
�

3

4

3

5

90 5

3
n

9.7 Refraction at a spherical surface and 
      lenses:  

In the section 9.5 we saw that due to 
refraction, the bottom of a water body appears 

to be raised and n
Real depth

apparent depthwater =
   

  . 

However, this is valid only if we are dealing 
with refraction at a plane surface. In many cases 
such as liquid drops, lenses, ellipsoid paper 
weights, etc, curved surfaces are present and the 
formula mentioned above may not be true. In 
such cases we need to consider refraction at one 
or more spherical surfaces. This will involve 
parameters including the curvature such as 
radius of curvature, in addition to refractive 
indices.

Lenses: Commonly used lenses can be 
visualized to be consisting of intersection of 
two spheres of radii of curvature R

1
 and R

2
 or of 

one sphere and a plane surface (R = ∞) . A lens 
is said to convex if it is thicker in the middle 
and narrowing towards the periphery. A lens is 
concave if it is thicker at periphery and narrows 
down towards center. Convex lens is visualized 
to be internal cross section of two spheres (or 
one sphere and a plane surface) while concave 
lens is their external cross section (Figs. 9.11-a to 
9.11-f). Concavo-convex and convexo-concave 
lenses are commonly used for spectacles of 
positive and negative numbers, respectively. 

For lenses of material optically denser than 
the medium in which those are kept, convex 
lenses have positive focal length [according 
to Cartesian sign convention] and converge 
the incident beam while concave lenses have 
negative focal length and diverge the incident 
beam. 

For most of the applications of lenses, 
maximum thickness of lens is negligible (at 
least 50 times smaller) compared with all the 
other distances such as R

1
 and R

2
, u, v, f, etc. 

Such a lens is called as a thin lens and physical 
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center of such a lens can be assumed to be the 
common pole (or optical center) for both its 
refracting surfaces.

      

Fig. 9.11 (a): Convex 
lens as internal 
cross section of two 
spheres.

            

Fig. 9.11 (b): Concave 
lens as external cross 
section of two spheres.

       

Fig. 9.11 (c): Plano 
convex lens

          

Fig. 9.11 (d): Plano 
concave lens

              

Fig. 9.11 (e): concave-
convex lens

                 

Fig. 9.11 (f) convex-
concave lens

For any thin lens, 
1 1 1

f u
� ��

v
      --- (9.2)

If necessary, we can have a number of 
thin lenses in contact with each other having 
common principal axis. Focal power of such 
combination is given by the algebraic addition 
(by considering ± signs) of individual focal 
powers.

          ∴ 1 1 1 1 1

1 2 3

1 2 3

f f f f f

P P P P P

i

i

�
�

�
�

�

�
� � � � ��

� � � � � �

�

�    ..
 

For only two thin lenses, separated in air by 
distance d, 
1 1 1

1 2 1 2
1 2 1 2f f f

d

f f
P P dP P P� � � � � � �

 

Refraction at a single spherical surface: 
Consider a spherical surface YPY’ of radius of 
curvature R, separating two transparent media 
of refractive indices n1  and n2 �respectively with 
n1 < n2 . P is the pole and X’PX is the principal 
axis. A point object O is at an object distance 
-u from the pole, in the medium of refractive 
index n1 . Convexity or concavity of a surface 
is always with respect to the incident rays, i.e., 
with respect to a real object. Hence in this case 
the surface is convex (Fig. 9.12).

Fig. 9.12: Refraction at a single refracting 
surface.

To locate its image and in order to minimize 
spherical aberration, we consider two paraxial 
rays. The ray OP along the principal axis 
travels undeviated along PX. Another ray OA 
strikes the surface at A. CAN is the normal 
from center of curvature C of the surface at A. 
Angle of incidence in the medium n

1
 at A is i.  

Unless mentioned specifically, we assume 
lenses to be made up of optically denser 
material compared to the medium in which 
those are kept, e.g., glass lenses in air or in 
water, etc. As special cases we may consider 
lenses of rarer medium such as an air lens 
in water or inside a glass. A spherical 
hole inside a glass slab is also a lens of 
rarer medium. In such case, physically (or 
geometrically or shape-wise) convex lens 
diverges the incident beam while concave 
lens converges the incident beam.

For lenses, the relations between  u, v, R and f 
depend also upon the refractive index n  of the 

material of the lens. The relation f
R

��
�
�

�
�
�2  

does NOT hold good for lenses. Below we shall 
derive the necessary relation by considering 
refraction at the two surfaces of a lens 
independently. 
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As n
1
< n

2 
, the ray deviates towards the normal, 

travels along AZ and cuts the principal axis at 
I. Thus, real image of point object O is formed 
at I. Angle of refraction in medium n

2 
 is r. 

According to Snell’s law,

 n i1 sin � � �  n r2sin � �   --- (9.3)

Let  be the angles subtended by 
incident ray, normal and refracted ray with the 
principal axis.
� � � � �i r� �� � � �and�

For paraxial rays, all these angles are 
small and PA can be considered as an arc for 

.

 

Also, � � �
�

arc AP

PO

arc AP

u

� �
,�

� � �
arc AP

PC

arc AP

R

   
  and

� � �
arc AP

PI

arc AP� �

v  
� �n i n r1 2  
� �� � � �� �n n1 2� � � �

 
� �� � � �n n n n2 1 2 1� � �

Substituting  and canceling 'arc AP', 
we get 

 

n n

R

n n

u
2 1 2 1�

� �
v    

--- (9.4)

Example 6: A glass paper-weight (n =1.5) of 
radius 3 cm has a tiny air bubble trapped inside 
it. Closest distance of the bubble from the 
surface is 2 cm. Where will it appear when seen 
from the other end (from where it is farthest)?

Solution: Accompanying Figure below 
illustrates the location of the bubble. 

According to the symbols used in the Eq. 
(9.4), we get,

n2 1= =refractive index�of�the�other�medium �

u cm� �� � �4  
v = ? 
R cm� �� � �3  
n n

R

n n

u
2 1 2 1�

� �
v  

�
�
�

� �
�

� � � � ���
. .

�� ��� � . �
1 1 5

3

1 1 5

4

1

6

1 3

8
4 8

v v
v cm

 

In this case apparent depth is NOT less 
than real depth. This is due to curvature of the 
refracting surface. 

In this case (Fig. 9.12) we had considered 
the object placed in rarer medium, real image 
in denser medium and the surface facing the 
object to be convex. However, while deriving 
the relation, all the symbolic values (which 
could be numeric also) were substituted as 
per the Cartesian sign convention (e.g. ‘u’ 
as negative, etc.). Hence the final expression 
(Eq. 9.4) is applicable to any surface 
separating any two media, and real or virtual 
image provided you substitute your values 
(symbolic or numerical) as per Cartesian 
sign convention. The only restriction is that 
n

1 
is for medium of real object and n

2
 is the 

other medium (not necessarily the medium 
of image). Only in the case of real image, it 
will be in medium n

2
. If virtual, it will be in 

the medium n
1 
(with image distance negative 

how do you justify this?).
We strongly suggest you to do the 

derivations yourself for any other special 
case such as object placed in the denser 
medium, virtual image, concave surface, etc. 
It must be remembered that in any case you 
will land up with the same expression as in 
Eq. (9.4).

Lens makers’ equation: Relation between 
refractive index (n), focal length (f ) and radii of 
curvature R

1
 and R

2
  for a thin lens.

Consider a lens of radii of curvature R
1
 and 

R
2
 kept in a medium such that n is refractive 
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index of material of the lens with respect to the 
outside medium. Assuming the lens to be thin, 
P is the common pole for both the surfaces. O is 
a point object on the principal axis at a distance 
u from P. First refracting surface of the lens 
of radius of curvature R1  faces the object (Fig 
9.13).

Fig. 9.13: Lens maker's equation.

Axial ray OP travels undeviated. Paraxial 
ray OA deviates towards normal and would 
intersect axis at I

1
, in the absence of second 

refracting surface. PI
1 
= v

1
 is the image distance 

for intermediate image I
1
.

Thus, the symbols to be used in Eq. (9.4) are

     n n2 = ,� n1 1= ,� R R= 1,� u u= , v = v1

∴
 

n

R

n

u

�
� �

� �
1 1

1 1v
    

--- (9.5)

(Not that, in this case, we are not substituting 
the algebraic values but just using different 
symbols.) 

Before reaching I
1
, the ray PI

1
 is intercepted 

at B by the second refracting surface. In this 
case, the incident rays AB and OP are in the 
medium of refractive index n and converging 
towards I

1
. Thus, I

1
 acts as virtual object for 

second surface of radius of curvature (R
2
) and 

object distance is u �� �v1 .  As the incident rays 
are in the medium of refractive index n, this 
is the medium of (virtual) object ∴ n

1 
= n and 

refractive index of the other medium is n
2
 = 1. 

After refraction, the ray bends away from 
the normal and intersects the principal axis at I 
which is the real image of object O formed due 
to the lens. ∴ PI = v.

Substituting all these symbols in Eq. (9.4), 
we get

 
1 1 1

2 2 1

�
�

�
�

� �
� �

n

R

n

R

n

v v
  --- (9.6)

Adding Eq. (9.5) and (9.6), we get,

 
n

R R u
�� � �

�

�
�

�

�
� � �1

1 1 1 1

1 2 v
  

For 

 � � �� � �
�

�
�

�

�
��

1
1

1 1

1 2f
n

R R
 --- (9.7)

For preparing spectacles, it is necessary 
to grind the glass (or acrylic, etc.) for having 
the desired radii of curvature. Equation (9.7) 
can be used to calculate the radii of curvature 
for the lens, hence it is called the lens makers’ 
equation. (It should be remembered that while 
solving problems when you are using equations 
9.1, 9.2, 9.4, 9.7, etc., we will be substituting the 
values of the corresponding quantities. Hence 
this time it is algebraic substitution, i.e., with 

Special cases:

Most popular and most common special 
case is the one in which we have a thin, 
symmetric, double lens. In this case, R R1 2� �and  
are numerically equal. 

(A) Thin, symmetric, double convex lens: R
1
 

is positive, R
2
 is negative and numerically 

equal. Let R R R1 2= = .

� � �� � �
�

�
�
�

�
�
� �

�� �
�
1

1
1 1 2 1

f
n

R R

n

R  
Further, for popular variety of glasses, 
n ≅ 1 5. . In such a case, f R= .
(B) Thin, symmetric, double concave lens: 
R

1
 is negative, R

2
 is positive and numerically 

equal. Let R R R1 2= = .

� � �� �
�

��
�
�

�
�
� �

�� �
�

�
1

1
1 1 2 1

f
n

R R

n

R   

Further if 
(C) Thin, planoconvex lenses: One radius is 

R and the other is ∞. � �
�1 1

f

n

R

Further if 

proper ±  sign)

Example 7: A dense glass double convex lens 
n �� �2  designed to reduce spherical aberration 

has |R
1
|:|R

2
|=1:5. If a point object is kept 15 cm 

in front of this lens, it produces its real image at 
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7.5 cm. Determine R
1
 and R

2
.

Solution: u = - 15 cm, v = + 7.5 cm (real image 
is on opposite side).

      

1 1 1 1 1

7 5

1

15
5

f u f
f� � � � �

�
� � �� ��� �

.
��� �

v
cm

 
The lens is double convex. Hence, R

1
 is positive 

and R
2
 is negative. Also, R R2 15=  and n = 2.

n
R R f

R R

�� � �
�

�
�

�

�
� �

� �� � �
�� �

�

�
��

�

�
�� �

�� �

1
1 1 1

2 1
1 1

5

1

5

1

1 2

1 1

�

� ���

66

5

1

5
6 30

1
1 2R

R R
�

�
�

�

�
� � � � � ���� � ��� �cm cm

 9.8 Dispersion of light and prisms: 
The colour of light that we see depends 

upon the frequency of that ray (wave). The 
refractive index of a material also depends upon 
the frequency of the wave and increases with 
frequency. Obviously refractive index of light 
is different for different colours. As a result, 
for an obliquely incident ray, the angles of 
refraction are different for each colour and they 
separate (disperse) as they travel along different 
directions. This phenomenon is called angular 
dispersion Fig 9.14. 

Fig. 9.14: Angular dispersion at a single 
surface.

If a polychromatic beam of light (bundle of 
rays of different colours) is obliquely incident 
upon a plane parallel transparent slab, emergent 
beam consists of all component colours 
separated out. However, in this case all those are 
parallel to each other and also parallel to initial 
direction. This is lateral dispersion which is 
measured as the perpendicular distance between 
the direction of incident ray and respective 
directions of dispersed emergent rays (L

R 
and 

L
V
) Fig 9.15. For it to be easily detectable, the 

parallel surfaces must be separated over very 
large distance and i should be large.

Fig. 9.15: Lateral dispersion due to plane 
parellal slab.

Example 8: A fine beam of white light is 
incident upon the longer side of a plane parallel 
glass slab of breadth 5 cm at angle of incidence 
600. Calculate angular deviation of red and 
violet rays within the slab and lateral dispersion 
between them as they emerge from the opposite 
side. Refractive indices of the glass for red and 
violet are 1.51 and 1.53 respectively. 

Solution: As shown in the Fig. 9.15 above, 
VM =  L

V
 and RT =  L

R
 give respective lateral 

deviations for violet and red colours and L
VR

 =  
L LV R-  is the lateral dispersion between these 
colours. n

R
 = 1.51, n

V
 = 1.53 and i = 60° 

� � � �

� � �

sin
sin sin

.
.

sin
sin sin

.
.

r
i

n

r
i

n

R
R

V
V

60

1 51
0 5735

60

1 53
0 5

0

0

666

� � � �

� � � � �

� �r R r r

i r i r

R RV R V

R V

V
35 34 28

25 25 3

320 0

0 0

� � ��

� ,

’’and

  

�

22’

� � � �� �� � �
� � �� �� � �

� sin . �

sin . �

L i r

L i r

R R

V V

RT AR cm�

VM AV cm

2 58

2 58
  

It shows that the lateral dispersion is too 
small to detect.
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In order to have appreciable and observable 
dispersion, two parallel surfaces are not useful. 
In such case we use prisms, in which two 
refracting surfaces inclined at an angle are 
used. Popular variety of prisms are having 
three rectangular surfaces forming a triangle. 
At a time two of these are taking part in the 
refraction. The one, not involved in refraction is 
called base of the prism. Fig 9.16.

Fig. 9.16: Prism consisting of three plane 
surfaces.

Any section of prism perpendicular to the base 
is called principal section of the prism. Usually 
we consider all the rays in this plane. Fig 9.17 a 
and 9.17 b show refraction through a prism for 
monochromatic and white beams respectively. 
Angular dispersion is shown for white beam. 

Fig. 9.17 (a):   Refraction through a prism 
(monocromatic light).

Fig. 9.17 (b): Angular dispersion through a 
prism. (white light).

Relations between the angles involved: 
Figure 9.18 shows principal section ABC of a 
prism of absolute refractive index n kept in air. 
Refracting surfaces AB and AC are inclined at 
angle A, which is refracting angle of prism or 
simply ‘angle of prism’. Surface BC is the base. 
A monochromatic ray PQ obliquely strikes first 

reflecting surface AB. Normal passing through 
the point of incidence Q is MQN. Angle of 
incidence at Q is i. After refraction at Q, the ray 
deviates towards the normal and strikes second 
refracting surface AC at R which is the point 
of emergence. MRN is the normal through R. 
Angles of refraction at Q and R are r

1
 and r

2
 

respectively. 

Fig. 9.18:  Deviation through a prism.

After R, the ray deviates away from normal and 
finally emerges along RS making e as the angle 
of emergence. Incident ray PQ is extended as 
QT. Emergent ray RS meets QT at X if traced 
backward. Angle TXS is angle of deviation δ .

∠ AQN =  � ��ARN 900    ……   (Angles at 
normal)

∴ From quadrilateral AQNR, 

 A +   ∠ QNR = 1800      ---   (9.8)

From ∆ QNR, r r1 2+ + ∠ QNR = 1800  ---    (9.9)

∴ From Eqs. (9.8) and (9.9),

  A r r� �1 2     ---   (9.10)

Angle δ  is exterior angle for triangle XQR.

  

�� �� �

� �� � � �� � �
� �� � � �� � �

� � �

�

XQR XRQ �

�

�

i r e r

i e r r

1 2

1 2

Hence, using Eq. (9.10), i e A�� � � � � � �
 � � � �i e A �       --- (9.11)
Deviation curve, minimum deviation and 
prism formula: From the relations (9.10) and 
(9.11), it is clear that δ ,� ,� � �e r r1 2and  depend upon 
i, A and n. After a certain minimum value of 
angle of incidence i

min
, the emergent ray is 

possible. This is because of the fact that for  
i< i

min
 , r

2
 > i

c
 and there is total internal reflection 

at the second surface and there is no emergent 
ray. This will be shown later. Then onwards, 

n
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as i increases, r
1
 increases as 

sin

sin

 i

r
n

1

=  but r
2
 

and e decrease. However, variation in δ  with 
increasing i is different. It is as plotted in the 
Fig. 9.19.

Fig. 9.19: Deviation curve for a prism.
It shows that, with increasing values of i, 

the angle of deviation δ decreases initially to 
a certain minimum �m� �  and then increases. 
It should also be noted that the curve is not a 
symmetric parabola, but the slope in the part 
after is less. It is clear that except at � �� m  , 
(Angle of minimum deviation) there are two 
values of i for any given δ .�By applying the 
principle of reversibility of light to path PQRS 
it is obvious that if one of these values is i,  
the other must be e and vice versa. Thus at 
� �� m , we have i e= .� Also, in this case, r

1
 = r

2
 

and A = r
1
 + r

2
 = 2r � �� �r

A

2
Only in this case QR is parallel to base BC and 
the figure is symmetric. 

Using these in Eq. (9.11), we get,

i i A i
A

m
m� � � � �

�� �
�

�
�

2
According to Snell’s law,

     

� �

��
�
�

�
�
�

�
�
�

�
�
�

n

A

A

msin

sin

�
2

2   
---  (9.12)

Equation (9.12) is called prism formula.
Example 9.9: For a glass (n =1.5) prism having 
refracting angle 600, determine the range of 
angle of incidence for which emergent ray 
is possible from the opposite surface and the 
corresponding angles of emergence. Also 
calculate the angle of incidence for which  
i = e. How much is the corresponding angle of 
minimum deviation?

(I) Grazing emergence and minimum angle 
of incidence: At the point of emergence, the 
ray travels form a denser medium into rarer 
(popular prisms are of denser material, kept 

in rarer). Thus if r n2
1 1

� �
�
�

�
�
�

�sin �is the critical 
angle, the angle of emergence e = 900 . This 
is called grazing emergence or we say that 
the ray just emerges. Angle of prism A is 
constant for a given prism and A r r� �1 2 . 
Hence the corresponding r1  and i will have 
their minimum possible values.

 

(II) For commonly used glass prisms, 

n = 1.5, sin sin� ��
�
�

�
�
� �

�
�
�

�
�
�

� � � �

1 1

0
2

1 1

1 5

41 49

n

r
max

.
'   

If prism is symmetric (equilateral), 

A � ’ ’� � � � �60 60 41 49 18 110
1

0 0 0r

 
� � �imin � .’27 55 280 0

(III) For a symmetric (equilateral) prism, 
the prism formula can be written as

n

m m

�
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�
�

�
�
�

�
�
�
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�
�

�
��

�
�

�
�
�

� �

�
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sin

s
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2
60
2
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2
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2
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   iin 30
2

��
�
�

�
�
�

�m

(IV) For a prism of denser material, 
kept in a rarer medium, the incident ray 
deviates towards the normal during the 
first refraction and away from the normal 
during second refraction. However, during 
both the refractions it deviates towards the 
base only. 
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Solution: As shown in the box above, 
imin = 27 550 ' . Angle of emergence for this is 
emax = 900 .

From the principle of reversibility of light, 
i and emax min= =90 27 550 0�� �� ’

Also, from the box above,

n

m

m

�
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�
�

�
�
�

�
�
�
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�
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��
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�

�
�
�
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�
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sin
sin

60

2
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2
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2

30
2 3
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�
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2
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�
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�
�

�m

 
i e A� � ��    and  i e m� � for � �� �   
∴ i + i = 60 + 37° 10′ = 97°10′ ∴ i = 48°35′
Thin prisms: Prisms having refracting angle 
less than 100 A �� �100 �are called thin prisms. 
For such prisms we can comfortably use  
sin � �� . For such prisms to deviate the incident 
ray towards the base during both refractions, it 
is essential that i should also be less than 100 so 
that all the other angles will also be small.
Thus 

� � �i nr e nr1 2 and �

Using these in Eq. (9.11), we get,
i e nr nr n r r nA A� � � � �� � � � �1 2 1 2 �

� � �� �� A n 1       --- (9.13)

A and n are constant for a given prism. Thus, 
for a thin prism, for small angles of incidences, 
angle of deviation is constant (independent of 
angle of incidence).
Angular dispersion and mean deviation: 
As discussed earlier, if a polychromatic beam 
is incident upon a prism, the emergent beam 
consists of all the individual colours angularly 

separated. This is angular dispersion (Fig. 9.20).

Fig. 9.20: Angular dispersion through a 
prism.

It is measured for any two component 
colours. 

� � �� � �21 2 1

Normally we do it for extreme colours. 
For white light, violet and red are the 

extreme colours.
� � �� � �VR V R  

Using deviation for thin prism (Eq. 9.13), we 
can write
� � � � �� � � �� �
� �� �
� � �21 2 1 2 1

2 1

1 1A n A n

A n n

where n
1
 and n

2
 are refractive indices for the 

two colours.
Also, 

� � �VR V R V R

V R

� � � �� � � �� �
� �� �

A n A n

A n n

1 1

--- (9.14)

Yellow is practically chosen to be the mean 
colour for violet and red. 

This gives mean deviation

 �
� �

�VR
V R

Y Y�
�

� � �� �
2

1A n          --- (9.15)

 (i)  If you see a rainbow widthwise, yellow 
appears to be centrally located. Hence 
angular deviation of yellow is average 
for the entire colour span. This may be 
the reason for choosing yellow as the 
mean colour. Remember, red band is 
widest and violet is much thinner than 
blue. 

 (ii) While obtaining the expression for ω, 
we have used thin prism formula for δ . 
However, the expression for ω  (equation 
9.16) is valid as well for equilateral 
prisms or right-angled prisms.

Do you know ?

n
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Dispersive power: Ability of an optical 
material to disperse constituent colours is its 
dispersive power. It is measured for any two 
colours as the ratio of angular dispersion to the 
mean deviation for those two colours. Thus, for 
the extreme colours of white light, dispersive 
power is given by

�
� �
� �

� �
�

�
�� �
��

��
�
��

�
�

�
�� �
�� �

�
�
�

V R

V R

V R

Y

V R

Y

V R

Y

2

1 1
   

A n n

A n

n n

n
   

--- (9.16)

As ω is the ratio of same physical quantities, 
it is unitless and dimensionless quantity. From 
the expression in terms of refractive indices 
it should be understood that dispersive power 
depends only upon refractive index (hence 
material only) and not upon the dimensions of 
prism. For commonly used glasses it is around 
0.03.

Example 10: For a dense flint glass prism of 
refracting angle 100, obtain angular deviation 
for extreme colours and dispersive power of 
dense flint glass. (

�
�

V

R

A

A

� � � � � �

� � � � �

( ) ( . ) ( . )

( ) ( . ) ( .

n

n
V

R

1 10 1 792 1 7 92

1 10 1 712 1 7 12))�

� � � � � �Angular�dispersion,�� . �� � �VR V R 0 8
0

dispersive power, ω =
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� �
� �

V R

V R

2

2
7 92 7 12

7 92 7 12

2 0 8

15 04
0

. .

. .

.

.
.11064

(This is much higher than popular crown glass)

9.9 Some natural phenomena due to Sunlight: 

Mirage: On a hot clear Sunny day, along 
a level road, a pond of water appears to be 
there ahead. However, if we physically reach 
the spot, there is nothing but the dry road and 
water pond again appears ahead. This illusion 

is called a mirage (Fig. 9.21). 

Fig. 9.21: The Mirage.

On a hot day the air in contact with the 
road is hottest and as we go up, it gets gradually 
cooler. The refractive index of air thus increases 
with height. As shown in the figure, due to this 
gradual change in the refractive index, the ray of 
light coming from the top of an object becomes 
more and more horizontal as it almost touches 
the road. For some reason (mentioned later) it 
bends above. Then onwards, upward bending 
continues due to denser air. As a result, for an 
observer, it appears to be coming from below 
thereby giving an illusion of reflection from an 
(imaginary) water surface.

Rainbow: Undoubtedly, rainbow is an eye-
catching phenomenon occurring due to rains 
and Sunlight. It is most popular because it is 
observable from anywhere on the Earth. A 
few lucky persons might have observed two 
rainbows simultaneously one above the other. 
Some might have seen a complete circular 
rainbow from an aeroplane (Of course, this time 
it’s not a bow!). Optical phenomena discussed 
till now are sufficient to explain the formation 
of a rainbow. 

The facts to be explained are: 

 (i) It is seen during rains and on the opposite 
side of the Sun.

 (ii)  It is seen only during mornings and 
evenings and not throughout the day.

 (iii)  In the commonly seen rainbow red arch is 
outside and violet is inside.

 (iv) In the rarely occurring concentric 
secondary rainbow, violet arch is outside 
and red is inside.

 (v) It is in the form of arc of a circle.

 (vi) Complete circle can be seen from a higher 
altitude, i.e., from an aeroplane.
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 (vii) Total internal reflection is not possible in 
this case.

Conditions necessary for formation of a 
rainbow: Light shower with relatively large 
raindrops, morning or evening time and enough 
Sunlight.

Optical phenomena involved: During the 
formation of a rainbow, the rays of Sunlight 
incident on water drops, deviate and disperse 
during refraction, internally (NOT total 
internally) reflect once (for primary rainbow) 
or twice (for secondary rainbow) and finally 
refract again into air. At all stages there 
is angular dispersion which leads to clear 
separation of the colours.

Primary rainbow: Figure 9.22 (a) shows the 
optical phenomena involved in the formation of 
a primary rainbow due to a spherical water drop. 

Possible reasons for the upward bending 
at the road during mirage could be: 
 (i)  Angle of incidence at the road is 

glancing. At glancing incidence, the 
reflection coefficient is very large 
which causes reflection.

 (ii)  Air almost in contact with the road is 
not steady. The non-uniform motion of 
the air bends the ray upwards and once 
it has bent upwards, it continues to do 
so.

 (iii) Using Maxwell’s equations for EM 
waves, correct explanation is possible 
for the reflection. 
It may be pointed out that total internal 

reflection is NEVER possible here because 
the relative refractive index is just less than 1 
and hence the critical angle (discussed in the 
article 9.6) is also approaching 900.

Do you know ?

White ray AB from the Sun strikes from upper 
portion of a water drop at an incident angle i. 
On entering into water, it deviates and disperses 
into constituent colours. Extreme colours 
violet(V) and red(R) are shown. Refracted rays 
BV and BR strike the opposite inner surface 
of water drop and suffer internal (NOT total 
internal) reflection. These reflected rays finally 

emerge from V′ and R′ and can be seen by an 
observer on the ground. For the observer they 
appear to be coming from opposite side of 
the Sun. Minimum deviation rays of red and 
violet colour are inclined to the ground level at  
θ

R
 = 42.8° ≅ 43° and θ

V
 = 40.8 ≅ 41° respectively.  

As a result, in the ‘bow’ or arch, the red is above 
or outer and violet is lower or inner.

Fig. 9.22 (a): Formation of primary rainbow.

Fig. 9.22 (b): Formation of secondary 
rainbow.

Secondary rainbow: Figure 9.22 (b) shows 
some optical phenomena involved in the 
formation of a secondary rainbow due to a 
spherical water drop. White ray AB from the 
Sun strikes from lower portion of a water drop 
at an incident angle i. On entering into water, it 
deviates and disperses into constituent colours. 
Extreme colours violet(V) and red(R) are shown. 
Refracted rays BV and BR finally emerge the 
drop from V' and R' after suffering two internal 
reflections and can be seen by an observer on 
the ground. Minimum deviation rays of red and 
violet colour are inclined to the ground level at 
θ

R
 ≅ 51° and θ

V
 ≅ 53° respectively.  As a result, 

in the ‘bow’ or arch, the violet is above or outer 
and red is lower or inner. 

Observer on ground

A

White 
sunlight
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(I) Why total internal reflection is not 
possible during formation of a rainbow? 

Angle of incidence i in air, at the water 
drop, can’t be greater than 90°. As a result, 
angle of refraction r in water will always less 
than the critical angle. From Fig a and b and 
by simple geometry, it is clear that this r itself 

Do you know ? of i and r. Again, by using Figs. a and b, we 
can obtain the corresponding angles θ θR V� �and  
at the horizontal, which is the visible angular 
position for the rainbow.
(III) Why is the rainbow a bow or an arch? 
Can we see a complete circular rainbow?

Figure c illustrates formation of primary 
and secondary rainbows with their common 
centre O is the point where the line joining 
the sun and the observer meets the Earth 
when extended. P is location of the observer. 
Different colours of rainbows are seen on 
arches of cones of respective angles described 
earlier.

Smallest half angle refers to the cone of 
violet colour of primary rainbow, which is 
410. As the Sun rises, the common centre of 
the rainbows moves down. Hence as the Sun 
comes up, smaller and smaller part of the 
rainbows will be seen. If the Sun is above 
410, violet arch of primary rainbow cannot 
be seen.  Obviously beyond 530, nothing will 
be seen. That is why rainbows are visible 
only during mornings and evenings.
However, if observer moves up (may be in 
an aeroplane), the line PO itself moves up 
making lower part of the arches visible. 
After a certain minimum elevation, entire 
circle for all the cones can be visible.
(IV) Size of water drops convenient for 
rainbow: Water drops responsible for the 
formation of a rainbow should not be too 
small. For too small drops the phenomenon 
of diffraction (redistribution of energy due 
to obstacles, discussed in XIIth standard) 
dominates and clear rainbow can’t be seen.

Fig. c

Fig. a

Fig. b

is the angle 
of incidence 
at any point 
for one or 
more internal 
re f lec t ions . 
O b v i o u s l y, 
total internal 

reflection is not possible.           
(II) Why is rainbow seen only for a definite 
angle range with respect to the ground? 

For clear visibility we must have a beam 
of enough intensity. From the deviation curve 
(Fig 9.19) it is clear that near minimum 
deviation the curve is almost parallel to x-axis, 
i.e., for majority of angles of incidence in this 
range, the angle of deviation is nearly the same 

and those are 
almost parallel 
forming a beam 
of enough 
intensity.  Thus, 
the rays in the 
near vicinity 
of minimum 

deviation are almost parallel to each other. 
Rays beyond this range suffer wide angular 
dispersion and thus will not have enough 
intensity for visibility.

By using simple geometry for Figs. 
a and b it can be shown that the angle of 
deviation between final emergent ray and the 
incident ray is δ = π + 2i - 4r during primary 
rainbow, and δ = 2π + 2i - 6r during secondary 
rainbow. Using these relations and Snell’s 
law sin sini n r= ,  we can obtain derivatives 
of δ .  Second derivative of δ  comes out 
to be negative, which shows that it is the 
minima condition. Equating first derivative 
to zero we can obtain corresponding values 
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9.10 Defects of lenses (aberrations of optical 

        images):  

As mentioned in the section 9.4 for 
aberration for curved mirrors, while deriving 
various relations, we assume most of the rays 
to be paraxial by using lenses of small aperture. 
In reality, we have objects of finite sizes. Also, 
we need optical devices of large apertures 
(lenses and/or mirrors of size few meters for 
telescopes, etc.). In such cases the beam of rays 
is no more paraxial, quite often not parallel also. 
As a result, the spherical oberration discussed 
for spherical mirrors can occur for lenses also. 
Only one defect is mentioned corresponding to 
monochromatic beam of light. 

Chromatic aberration: In case of mirrors 
there is no dispersion of light due to refractive 
index. However, lenses are prepared by using 
a transparent material medium having different 
refractive index for different colours. Hence 
angular dispersion is present. A convex lens can 
be approximated to two thin prisms connected 
base to base and for a concave lens those are 
vertex to vertex. (Fig. 9.23 (a) and 9.23 (b))

      Fig. 9.23: (a) Convex lens (b) Concave lens

If the lens is thick, this will result into 
notably different foci corresponding to each 
colour for a polychromatic beam, like a 
white light. This defect is called chromatic 
aberration, violet being focused closest to pole 
as it has maximum deviation. (Fig 9.24 (a) and 
9.24 (b)) Longitudinal chromatic aberration, 
transverse chromatic aberration and circle of 
least confusion are defined in the same manner 
as that of spherical aberration for spherical 
mirrors. 

Fig. 9.24: Chromatic aberration: (a) 
Convex lens. 

Fig. 9.24: Chromatic aberration: (b) 
Concave lens

Reducing/eliminating chromatic aberration: 

Eliminating chromatic aberration 
simultaneously for all the colours is impossible. 
We try to eliminate it for extreme colours which 
reduces it for other colours. Convenient methods 
to do it use either a convex and a concave 
lens in contact or two thin convex lenses with 
proper separation. Such a combination is called 
achromatic combination.

Achromatic combination of two lenses in 
contact: Let ω

1
 and ω

2
  be the dispersive powers 

of materials of the two component lenses used 
in contact for an achromatic combination. 
Their focal lengths f for violet, red and yellow 
(assumed to be the mean colour) are suffixed by 
respective letters V, R and Y. 

Also, let K
R R1

1 2 1

1 1
� �
�

�
�

�

�
�  for lens 1 and

K
R R2

1 2 2

1 1
� �
�

�
�

�

�
� �for lens 2.

For two thin lenses in contact, 

 1 1 1

1 2f f f
� �  …… 

To be used separately for respective colours.

For the combination to be achromatic, the 



179

resultant focal length of the combination must 
be the same for both the colours, i.e.,   

 f f
f fV R
V R

= =��or �
1 1

 

 
� � � �

1 1 1 1

1 2 1 2f f f fV V R R

(n
1V

-1) K
1
 + (n

2V
-1) K

2  
= (n

1R
-1) K

1
 + (n

2R
-1) K

2 

 …… using lens makers’ Eq. (9.7)
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     --- (9.17)

For mean colour yellow,
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     --- (9.18)

Equating R.H.S. of (9.17) and (9.18) and 
rearranging, we can write

       

f

f

n n

n

n n

n
Y

Y

V R

Y

R R

Y

2

1

2 2

2

1 1

1

2

1
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�
�
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�
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�
�

�

�
�

� �       
�
�   

--- (9.19)

Equation (9.19) is the condition for achromatic 
combination of two lenses, in contact.

Dispersive power ω is always positive. Thus, 
one of the lenses must be convex and the other 
concave. 

If second lens is concave, f Y2  is negative. 

 ∴ 
1 1 1

1 2f f fY Y Y

� �  

For this combination to be converging, fY  
should be positive. 

Hence, f fY Y1 2< �and  � �1 2�
Thus, for an achromatic combination if there 
is a choice between flint glass ( n =  1.655) 
and crown glass ( n = 1 517. ), the convergent 
(convex) lens must be of crown glass and the 
divergent (concave) lens of flint glass.

Example 9.11: After Cataract operation, a 
person is recommended with concavo-convex 
spectacles of curvatures 10 cm and 50 cm. 
Crown glass of refractive indices 1.51 for red 
and 1.53 for violet colours is used for this. 
Calculate the lateral chromatic aberration 
occurring due to these glasses.

Solution: For a concavo-concave lens, both 
the radii of curvature are either positive or both 
negative. If convex shape faces object, both 
will be positive. See the accompanying figure.  

Fig.  Concavo-convex 
lens with convex face 
receiving incident rays
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 ∴ Longitudinal chromatic aberration  

 = f
V
 - f

R
=25.51 - 23.58 

= 1.93 cm,... (quite appreciable!)

Verify that you get the same answer even 
if you consider the concave surface facing the 
incident rays.

Spherical aberration: Longitudinal spherical 
aberration, transverse spherical aberration and 
circle of least confusion are defined in the same 
manner as that for spherical mirrors. (Fig 9.25 
(a) and 9.25 (b))
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Fig. 9.25 (a): Spherical aberration, Convex 
lens.

Fig. 9.25 (b): Spherical aberration, Concave 
lens

Methods to reduce/eliminate spherical 
aberration of lenses:

 (i) Cheapest method to reduce the spherical 
aberration is to use a planoconvex or 
planoconcave lens with curved side facing 
the incident rays (real object). Reversing it 
increases the aberration appreciably.

 (ii) Certain ratio of radii of curvature for a 
given refractive index almost eliminates 
the spherical aberration. For n =  1.5, the 

ratio is 
R

R
1

2

1

6
=  and for n =  2, it is 

1

5
 (iii) Use of two thin converging lenses 

separated by distance equal to difference 
between their focal lengths with lens of 
larger focal length facing the incident rays 
considerably reduces spherical aberration.

 (iv) Spherical aberration of a convex lens is 
positive (for real image), while that of a 
concave lens is negative. Thus, a suitable 
combination of them (preferably a double 
convex lens of smaller focal length and 
a planoconcave lens of greater focal 
length) can completely eliminate spherical 
aberration.

9.11 Optical instruments:

Introduction: Whether an object appears 
bigger or not does not necessarily depend upon 
its own size. Huge mountains far off may appear 
smaller than a small tree close to us. This is 
because the angle subtended by the mountain 
at the eye from that distance (called the visual 
angle) is smaller than that subtended by the tree 
from its position. Hence, apparent size of an 
object depends upon the visual angle subtended 
by the object from its position. Obviously, for 
an object to appear bigger, we must bring it 
closer to us or we should go closer to it. 

However, due to the limitation for focusing 
the eye lens it is not possible to take an object 
closer than a certain distance. This distance is 
called least distance of distance vision D. For 
a normal, unaided human eye D = 25cm. If an 
object is brought closer than this, we cannot 
see it clearly. If an object is too small (like 
the legs of an ant), the corresponding visual 
angle from 25 cm is not enough to see it and 
if we bring it closer than that, its image on the 
retina is blurred. Also, the visual angle made 
by cosmic objects far away from us (such as 
stars) is too small to make out minor details and 
we cannot bring those closer. In such cases we 
need optical instruments such as a microscope 
in the former case and a telescope in the latter. 
It means that microscopes and telescopes help 
us in increasing the visual angle. This is called 
angular magnification or magnifying power.

Magnifying power: Angular magnification or 
magnifying power of an optical instrument is 
defined as the ratio of the visual angle made 
by the image formed by that optical instrument 
(β) to the visual angle subtended by the object 
when kept at the least distance of distinct vision 
(α ). (Figure 9.26 (a) and 9.26 (b)) In the case 
of telescopes, α  is the angle subtended by the 
object from its own position as it is not possible 
to get it closer.

Simple microscope or a reading glass: In 
order to read very small letters in a newspaper, 
sometimes we use a convex lens. You might 
have seen watch-makers using a special type 
of small convex lens while looking at very tiny 
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parts of a wrist watch. Convex lens used for 
this purpose is a simple microscope.

 
Fig. 9.26: (a) Visual Angle α.

Fig. 9.26: (b) Visual Angle β.
Figure 9.26 (a) shows visual angle α  made 

by an object, when kept at the least distance of 
distinct vision D. Without an optical instrument 
this is the greatest possible visual angle as we 
cannot get the object closer than this. Figure 
9.26 (b) shows a convex lens forming erect, 
virtual and magnified image of the same object, 
when placed within the focus. The visual angle 
β  of the object and the image in this case are 
the same. However, this time the viewer is 
looking at the image which is not closer than 
D. Hence the same object is now at a distance 
smaller than D. It makes β  greater then α  and 
the same object appears bigger.

Angular magnification or magnifying 
power, in this case, is given by 

For small angles � �� �and , we can write,
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Limiting cases: 
 (i) For maximum magnifying power, the image 

should be nearest possible, i.e., at D.  

  For a thin lens, 
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 (ii) For minimum magnifying power, v � �,�
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focal length f is between 
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only. 

For common human eyesight, D = 25 cm. 
Thus, if f = 5 cm,
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. 
Hence image appears to be only 5 to 6 times 
bigger for a lens of focal length 5 cm.

For M
D

fmin �
�

�
�

�

�
� �� 5 , v � � . ∴ m

v

u
� � � . 

Thus, the image size is infinite times that of the 
object, but appears only 5 times bigger.

For

M
D
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�
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�
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� �1 6� ,    

v � � �
�

25
25

6
� .cm �Corresponding�u cm  

∴ m
v

u
= = 6 . Thus, image size is 6 times 

that of the object, and appears also 6 times 
larger.

Example 9.12: A magnifying glass of focal 
length 10 cm is used to read letters of thickness 
0.5 mm held 8 cm away from the lens. Calculate 
the image size. How big will the letters appear? 
Can you read the letters if held 5 cm away from 
the lens? If yes, of what size would the letters 
appear? If no, why not?

f u� � � � �10 8� ,� � ,� ?�cm cm v  
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∴ Image will appear to be 3.125 times bigger. 
i.e., 3.125 × 0.5 = 1.5625 cm

For µ = - 5 cm, v will be - 10 cm.  

For an average human being to see clearly, 
the image must be at or beyond 25 cm. Thus, it 
will not possible to read the letters if held 5 cm 
away from the lens.

Compound microscope: As seen above, the 
magnifying power of a simple microscope 
is inversely proportional to its focal length. 
However, if we need focal length to be smaller 
and smaller, the corresponding lens becomes 
thicker and thicker. For such a lens both 
spherical as well as chromatic aberrations are 
dominant. Thus, if higher magnifying power is 
needed, we go for using more than one lenses. 
The instrument is then called a compound 
microscope. It is used to view very small objects 
(sizes . Also, whether 
the image is erect or inverted is immaterial. 

A compound microscope essentially uses 
two convex lenses of suitable focal lengths fit 
into a cylindrical tube with some adjustment 
possible for its length. The smaller lens (∼ 4 mm 
to 6 mm aperture) facing the object is called the 
objective. Other lens with which the observer 
jams her/his eye is litter larger and called as 
the eye lens. (Fig 9.27) During this discussion 
we consider the eye lens to be a single lens, but 
in practice it is an eyepiece, itself consisting of 
two planoconvex lenses.

Fig. 9.27: Compound Microscope.
As shown in the Fig. 9.27, a tiny object 

AB is placed between f and 2f of the objective 
which produces its real, inverted and magnified 
image A′ B′ in front of the eye lens. Position 
of the eye lens is so adjusted that the (inte-

rmediate) image A′ B′ is within its focus. Hence, 
for this object A′ B′, the eye lens behaves as a 
simple microscope and produces its virtual and 
magnified image A′′ B′′, which is inverted with 
respect to original object AB.

Magnifying power of a compound 
microscope with two lenses: From its position, 
the final image A′′ B′′ makes a visual angle β  
at the eye (jammed at the eye lens). Visual angle 
made by the object from distance D is α.

 ∴ tan
" "
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A B A'B'

ve eu
 

 tan� �
AB

D     (Fig. 9.29 (a))

∴Angular magnification or magnifying power,
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 is the linear (lateral) 

magnification of the objective and

D

u
M

e
e

�

�
�

�

�
� �  is the angular magnification or 

magnifying power of the eye lens. Length 
of the compound microscope then  becomes 
L = distance between the two lenses v

0
 + u

e
.  

Remarks: 
 (i)  In order to increase mo , we need to decrease 

uo . Thereby, the object comes closer 
and closer to the focus of the objective. 
This increases v

0
 and hence length of the 

microscope. Thus mo  can be increased 
only within the limitation of length of the 
microscope.

 (ii) Minimum value of Me  is 
D

fe

�

�
�

�

�
�  for final

  image at infinity and maximum value of 

M
D

fe
e

 is 1�
�

�
�

�

�
�  for final image at D 

  respectively. Me  and mo  together decide 
the minimum and maximum magnifying 
power of the microscope.
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Example 9.13: The pocket microscope used by 
a student consists of eye lens of focal length 
6.25 cm and objective of focal length 2 cm. 
At microscope length 15 cm, the final image 
appears biggest. Estimate distance of the object 
from the objective and magnifying power of the 
microscope.

Solution:
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Telescope: Telescopes are used to see terrestrial 
or astronomical bodies. A telescope essentially 
uses two lenses (or one large parabolic mirror 
and a lens). The lens facing the object (called 
objective) is of aperture as large as possible. For 
Newtonian telescopes, a large parabolic mirror 
faces the object. 

For terrestrial telescopes the objects to be 
seen are on the  Earth , like mountains, trees, 
players playing a match in a stadium, etc. In 
such case, the final image must be erect. Eye 
lens used for this purpose must be concave 
and such a telescope is popularly called a 
binocular. A variety of binoculars use three 
convex lenses with proper separation. The 
third lens again inverts the second intermediate 
image and makes final image erect with respect 
to the object. In this text we shall be discussing 
astronomical telescope.

For an astronomical telescope, the objects 
to be seen are planets, stars, galaxies, etc. In 
this case there is no necessity of erect image. 

Such telescopes use convex lens as eye lens. 
(Fig. 9.27).

Fig. 9.28: Telescope.

Magnifying power of a telescope: Objects 
to be seen through a telescope cannot be 
brought to distance D from the objective, like 
in microscopes. Hence, for telescopes, α  is the 
visual angle of the object from its own position, 
which is practically at infinity. Visual angle of 
the final image is β  and its position can be 
adjusted to be at D. However, under normal 
adjustments, the final image is also at infinity 
but making a greater visual angle than that of 
the object. (If the image is really at infinity, 
there will not be any parallax at the cross wires).  
Beam of incident rays is now inclined at an 
angle α  with the principal axis while emergent 
beam is inclined at a greater angle β  with the 
principal axis causing angular magnification. 
(Fig. 9.28)

Objective of focal length f
o
 focusses the 

parallel incident beam at a distance f
o
 from the 

objective giving an inverted image AB. For 
normal adjustment, the eye lens is so adjusted 
that the intermediate image AB happens to be at 
the focus of the eye lens. Rays refracted beyond 
the eye lens form a parallel beam inclined at an 
angle β  with the principal axis resulting into 
the image also at infinity.

∴Angular magnification or magnifying power,
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Length of the telescope for normal adjustment 
is L f fo e� �

Under the allowed limit of length objective of 
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maximum possible focal length fo  and eye lens 
of minimum possible focal length fe  can be 
chosen for maximum magnifying power.

Example 14: Focal length of the objective of 
an astronomical telescope is 1 m. Under normal 
adjustment, length of the telescope is 1.05 
m. Calculate focal length of the eyepiece and 
magnifying power under normal adjustment.

Solution: For astronomical telescope,

L= f
0
 + f

e
 ∴1.05 = 1 + f

0
 ∴ f

e
 = 0.05 m = 5 cm

Under normal adjustments,

 M
f

f
o

e

= = =
1

0 05
20

.

1. Choose the correct option 

 i. As per recent understanding light consists 
of 

  (A) rays  

  (B) waves  

  (C) corpuscles 

  (D) photons obeying the rules of waves

 ii. Consider optically denser lenses P, Q, 
R and S drawn below. According to 
Cartesian sign convention which of these 
have positive focal length?

    

  (A) Only P

  (B) Only P and Q 

  (C) Only P and R  

  (D) Only Q and S

 iii. Two plane mirrors are inclined at angle 
400 between them. Number of images 
seen of a tiny object kept between them is

  (A) Only 8  (B) Only 9 

  (C) 8 or 9  (D) 9 or 10

 iv. A concave mirror of curvature 40 cm, 
used for shaving purpose produces image 
of double size as that of the object. Object 
distance must be 

  (A) 10 cm only    

  (B) 20 cm only  

  (C) 30 cm only   

  (D) 10 cm or 30 cm

Exercises Exercises

 v. Which of the following aberrations will 
NOT occur for spherical mirrors?

  (A) Chromatic aberration  

  (B) Coma

  (C) Distortion 

  (D) Spherical aberration 

 vi.  There are different fish, monkeys and 
water on the habitable planet of the star 
Proxima b. A fish swimming underwater 
feels that there is a monkey at 2.5 m on the 
top of a tree. The same monkey feels that 
the fish is 1.6 m below the water surface. 
Interestingly, height of the tree and the 
depth at which the fish is swimming are 
exactly same. Refractive index of that 
water must be

  (A) 6/5   (B) 5/4  

  (C) 4/3   (D) 7/5

 vii. Consider following phenomena/
applications: P) Mirage, Q) rainbow, 
R) Optical fibre and S) glittering of a 
diamond. Total internal reflection is 
involved in

  (A) Only R and S (B) Only R  

  (C) Only P, R and S (D) all the four

 viii. A student uses spectacles of number -2 for 
seeing distant objects. Commonly used 
lenses for her/his spectacles are

  (A) bi-concave  

  (B) double concave 

  (C) concavo-convex 

  (D) convexo-concave
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 ix. A spherical marble of refractive index  
1.5 and curvature 1.5 cm, contains a tiny 
air bubble at its centre. Where will it 
appear when seen from outside?

  (A) 1 cm inside  (B) at the centre

  (C) 5/3 cm inside (D) 2 cm inside

 x. Select the WRONG statement.

  (A) Smaller angle of prism is 
recommended  for greater angular 
dispersion.

  (B) Right angled isosceles glass prism is 

   commonly used for total internal   
 reflection.

  (C) Angle of deviation is practically 
constant for thin prisms.

  (D) For emergent ray to be possible from 

   the second refracting surface, certain 

   minimum angle of incidence is 

   necessary from the first surface.

 xi. Angles of deviation for extreme colours 
are given for different prisms. Select the 
one having maximum dispersive power 
of its material.

  (A) 7°, 10°  (B) 8°, 11°   
(C) 12°, 16°  (D) 10°, 14° 

 xii. Which of the following is not involved in 
formation of a rainbow?

  (A) refraction 

  (B) angular dispersion 

  (C) angular deviation 

  (D) total internal reflection

 xiii. Consider following statements regarding 
a simple microscope:

  (P) It allows us to keep the object within 
the least distance of distant vision.

  (Q) Image appears to be biggest if the 
object is at the focus.

  (R) It is simply a convex lens.

  (A) Only (P) is correct   

  (B) Only (P) and (Q) are correct

  (C) Only (Q) and (R) are correct  
(D) Only (P) and (R) are correct

2. Answer the following questions. 

 i) As per recent development, what is the 
nature of light? Wave optics and particle 
nature of light are used to explain which 
phenomena of light, respectively?

 ii) Which phenomena can be satisfactorily 
explained using ray optics? State the 
assumptions on which ray optics is based.

 iii)  What is focal power of a spherical mirror 
or of a lens? What may be the reason for 

using P
f

=
1

 as its expression?

 

 iv)  At which positions of the objects do 
spherical mirrors produce (i) diminished 
image, (ii) magnified image?

 v) State the restrictions for having images 
produced by spherical mirrors to be 
appreciably clear. 

 vi)  Explain spherical aberration for spherical 
mirrors. How can it be minimized? Can it 
be eliminated by some curved mirrors?

 vii) Define absolute refractive index and 
relative refractive index. Explain in brief, 
with an illustration for each.

 viii) Explain ‘mirage’ as an illustration of 
refraction. 

 ix) Under what conditions is total internal 
reflection possible? Explain it with a 
suitable example. Define critical angle of 
incidence and obtain an expression for it.

 x) Describe construction and working of 
an optical fibre. What are the advantages 
of optical fibre communication over 
electronic communication?

 xi) Why is a prism binoculars preferred 
over traditional binoculars? Describe its 
working in brief.

 xii) A spherical surface separates two 
transparent media. Derive an expression 
that relates object and image distances 
with the radius of curvature for a point 
object. Clearly state the assumptions, if 
any.
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 xiii) Derive lens makers’ equation. Why is it 
called so? Under which conditions focal 
length f and radii of curvature R are 
numerically equal for a lens?

 2. Answer the following questions in 
detail. 

 i) What are different types of dispersions of 
light? Why do they occur? 

 ii) Define angular dispersion for a prism. 
Obtain its expression for a thin prism. 
Relate it with the refractive indices of the 
material of the prism for corresponding 
colours.

 iii) Explain and define dispersive power 
of a transparent material. Obtain its 
expressions in terms of angles of 
deviation and refractive indices.

 iv) (i) State the conditions under which a 
rainbow can be seen. 

  (ii) Explain the formation of a primary 
rainbow. For which angular range with 
the horizontal is it visible?

  (iii) Explain the formation of a secondary 
rainbow. For which angular range with 
the horizontal is it visible?

  (iv) Is it possible to see primary and 
secondary rainbow simultaneously? 
Under what conditions?

 v) (i) Explain chromatic aberration for 
spherical lenses. State a method to 
minimize or eliminate it.

  (ii) What is achromatism? Derive a 
condition to achieve achromatism for a 
lens combination. State the conditions 
for it to be converging.

 vi) Describe spherical aberration for 
spherical lenses. What are different ways 
to minimize or eliminate it?

 vii) Define and describe magnifying power of 
an optical instrument. How does it differ 
from linear or lateral magnification?

 viii) Derive an expression for magnifying 
power of a simple microscope. Obtain its 
minimum and maximum values in terms 
of its focal length.

 ix)  Derive the expressions for the magnifying 
power and the length of a compound 
microscope using two convex lenses.

 x) What is a terrestrial telescope and an 
astronomical telescope?

 xi) Obtain the expressions for magnifying 
power and the length of an astronomical 
telescope under normal adjustments. 

 xii) What are the limitations in increasing 
the magnifying powers of (i) simple 
microscope (ii) compound microscope 
(iii) astronomical telescope?

 3.      Solve the following numerical examples

 i)  A monochromatic ray of light strike the 
water (n = 4/3) surface in a cylindrical 
vessel at angle of incidence 530. Depth of 
water is 36 cm. After striking the water 
surface, how long will the light take to 
reach the bottom of the vessel? [Angles 
of the most popular Pythagorean triangle 
of sides in the ratio 3:4:5 are nearly 370, 
530 and 900] 

                [Ans: 2 ns]

 ii)  Estimate the number of images produced 
if a tiny object is kept in between two 
plane mirrors inclined at 350, 360, 400 and 
450. 

    [Ans: 10, 9, 9 or 8, 7 respectively]

 iii)  A rectangular sheet of length 30 cm and 
breadth 3 cm is kept on the principal axis 
of a concave mirror of focal length 30 cm. 
Draw the image formed by the mirror on 
the same ray diagram, as far as possible 
on scale. 

  [Ans: Inverted image starts from 50 
cm and ends at 90 cm. Its height in the 
beginning is 2 cm and at the end it is 
6 cm. At 60 cm, image height is 3 cm. 
Thus, outer boundary if the image is a 
curve]

 iv)  A car uses a convex mirror of curvature 
1.2 m as its rear-view mirror. A minibus 
of cross section 2.4 m × 2.4 m is 6.6 m 
away from the mirror. Estimate the image 
size. 

                     [Ans: A square of edge 0.2 m]
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 v) A glass slab of thickness 2.5 cm having 
refractive index 5/3 is kept on an ink spot. 
A transparent beaker of very thin bottom, 
containing water of refractive index 4/3 
up to 8 cm, is kept on the glass block. 
Calculate apparent depth of the ink spot 
when seen from the outside air.   
                     [Ans: 7.5 cm]

 vi) A convex lens held some distance above 
a 6 cm long pencil produces its image 
of SOME size. On shifting the lens by a 
distance equal to its focal length, it again 
produces the image of the SAME size as 
earlier. Determine the image size. 

             [Ans: 12 cm]

 vii)  Figure below shows the section ABCD of 
a transparent slab. There is a tiny green 
LED light source at the bottom left corner 
B. A certain ray of light from B suffers 
total internal reflection at nearest point P 
on the surface AD and strikes the surface 
CD at point Q. Determine refractive index 
of the material of the slab and distance 
DQ. At Q, the ray PQ will suffer partial 
or total internal reflection? [You may use 
the approximation given in Q 1 above]. 

  [Ans: n = 5/4, DQ = 1.5 cm, 
Partial internal reflection at Q] 

 viii) A point object is kept 10 cm away from 
one of the surfaces of a thick double 
convex lens of refractive index 1.5 and 
radii of curvature 10 cm and 8 cm. Central 
thickness of the lens is 2 cm. Determine 
location of the final image considering 
paraxial rays only.

  Hint : Single spherical surface formula 
to be used twice.  

  [Ans: 64 cm away from the other surface]

 ix) A monochromatic ray of light is incident 
at 370 on an equilateral prism of refractive 
index 3/2. Determine angle of emergence 
and angle of deviation. If angle of prism 
is adjustable, what should its value be for 
emergent ray to be just possible for the 
same angle of incidence. 

      [Ans: e = 63°, δ = 40°, A = 65° 24' for 

                e = 90° (just emerges)]

 x)  From the given data set, determine 
angular dispersion by the prism and 
dispersive power of its material for 
extreme colours. n

R
 = 1.62 n

V
 = 1.66,  

δ
R
 = 3.1°  

        [Ans: δ
VR

 = 0.2°, ω
VR 

= 
1

16
 = 0.0625]

 xi)  Refractive index of a flint glass varies 
from 1.60 to 1.66 for visible range. Radii 
of curvature of a thin convex lens are 10 
cm and 15 cm. Calculate the chromatic 
aberration between extreme colours. 

                   [Ans: 10/11 cm]

 xii) A person uses spectacles of ‘number’ 
2.00 for reading. Determine the 
range of magnifying power (angular 
magnification) possible. It is a concavo-
convex lens (n = 1.5) having curvature of 
one of its surfaces to be 10 cm. Estimate 
that of the other.   
[Ans:  M

min
 = 0.5, M

max
 = 1.5 R

2
 = 50/3 cm]

 xiii)  Focal power of the eye lens of a compound 
microscope is 6 dioptre. The microscope 
is to be used for maximum magnifying 
power (angular magnification) of at least 
12.5. The packing instructions demand 
that length of the microscope should be 
25 cm. Determine minimum focal power 
of the objective. How much will its radius 
of curvature be if it is a biconvex lens of 
n = 1.5.  

     [Ans: 40 dioptre, 2.5 cm]

***
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10.1 Introduction:

Electrostatics deals with static electric 
charges, the forces between them and the 
effects produced in the form of electric fields 
and electric potentials. We have already 
studied some aspects of electrostatics in earlier 
standards. In this  Chapter  we will review some 
of them and then go on to study some aspects 
in details.

Current electricity, which plays a major role 
in our day to day life, is produced by moving 
charges. Charges are present everywhere around 
us though their presence can only be felt under 
special circumstances. For example, when we 
remove our sweater in winter on a dry day, we 
hear some crackling sound and the sweater 
appears to stick to our body. This is because 
of the electric charges produced due to friction 
between our body and the sweater. Similarly, 
the lightening that we see in the sky is also due 
to the flow of large amount of electric charges 
that develop on the clouds due to friction. 

10.2 Electric Charges:

Historically, opposite electric charges 
were known to the Greeks in the 600 BC. 
They realized that equal and opposite charges 
develop on amber and fur when rubbed against 
each other. Now we know that electric charge 
is a basic property of elementary particles of 
which matter is made of. These elementary 
particles are proton, neutron, and electron. 
Atoms are made of these particles and matter is 
made from atoms. A proton is considered to be 
positively charged and electron to be negatively 
charged. Neutron is electrically neutral, i.e., it 
has no charge.  An atomic nucleus is made up 
of protons and neutrons and hence is positively 
charged. Negatively charged electrons surround 

 1.  Have you experienced a shock while getting up from a plastic chair and shaking hand with your 
friend?

 2.  Ever heard a crackling sound while taking out your sweater in winter?
 3. Have you seen the lightning striking during pre-monsoon weather? 

Can you recall?

the nucleus so as to make an atom electrically 
neutral. Thus, most matter around us is 
electrically neutral. 

        

Fig. 10.1 a       Fig. 10.1 b

         

Fig. 10.1 c      Fig. 10.1 d

Fig. 10.1 (a): Insulated conductor

Fig. 10.1 (b): +ve charge is neutralized by 
electron from Earth

Fig. 10.1 (c):  Earthing is removed -ve 
charge still stays on the conductor due to 
+ve charged rod

Fig. 10.1 (d): Rod removed -ve charge is 
distributed over the surface of the conductor

When certain dissimilar substances, like 
fur and amber or comb and dry hair are rubbed 
against each other, electrons get transferred 
to the other substance making them charged.  
The substance receiving electrons develops a 
negative charge while the other is left with an 
equal amount of positive charge. This can be 
called charging by conduction as charges are 
transfered from one body to another. Charges 
can be separated by other means as well, like 

Electrostatics10. 
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Gold Leaf Electroscope:
This is a classic instrument for detecting 

presences of electric charge. A metal disc 
is connected to one end of a narrow metal 
rod and a thin piece of gold leaf is fixed to 
the other end. The whole of this part of the 
electroscope is insulted from the body of 
the instrument. A glass front prevents air 
draughts but allows to observe the effect of 
charge on the leaf.

When a charge is put on the disc at the 
top it spreads down to the plate and leaf 
moves away from the plate. This happens 
because similar charges repel. The more the 
charge on the disc, more is the separation of 
the leaf from the plate.

The leaf can be made to fall again by 
touching the disc. This is done by  earthing 
the electroscope. An earth terminal prevents 
the case from accumulating any stray 
charge. The electroscope can be charged in 
two ways.
 (a)  by contact- a charged rod is brought 

in contract with the disc and charge 
is transferred to the electroscope. This 
method gives the gold leaf the same 
charge as that on the conductor. This is 
not a very effective method of charging 
the electroscope.

 (b)  by induction- a charged rod is brought 
close to the disc (not touching it) and 
the electroscope is  earthed. The rod 
is then removed. This method give the 
gold leaf opposite charges. 
The following diagrams show how the 

charges spread to the gold leaf and lift it.

chemical reactions (in cells), convection (in 
clouds), diffusion (in living cells) etc. 

If an uncharged conductor is brought near 
a charged body, (not in physical contact) the 
nearer side of the conductor develops opposite 
charge to that on the charged body and the far 
side of the conductor develops charge similar 
to that on the charged body. This is called 
induction. This happens because the electrons 
in a conductor are free and can move easily in 
presence of a charged body. This can be seen 
from Fig. 10.1. 

A charged body attracts or repels electrons 
in a conductor depending on whether the charge 
on the body is positive or negative respectively. 
Positive and negative charges are redistributed 
and are accumulated at the ends of the conductor 
near and away from the changed body. From 
the above discussion it can be inferred that 
there are only two types of charges found in 
nature, namely, positive and negative charges. 
In induction, there is no transfer of charges 
between the charged body and the conductor. 
So when the charged body is moved away from 
the conductor, the charges in the conductor are 
free again. 

 1. When a petrol or a diesel tanker is 
emptied in a tank, it is grounded.  

 2. A thick chain hangs from a petrol or a 
diesel tanker and it is in contact with 
ground when the tanker is moving.     

Can you tell?

10.3 Basic Properties of Electric Charge:

10.3.1 Additive Nature of Charge:

Electric charge is additive, similar to mass. 
The total electric charge on an object is equal 
to the algebraic sum of all the electric charges 
distributed on different parts of the object.

It may be pointed out that while taking the 
algebraic sum, the sign (positive or negative) of 
the electric charges must be taken into account. 
Thus if two bodies have equal and opposite 
charges, the net charge on the system of the two 
bodies is zero. This is similar to that in case of 
atoms where the nucleus is positively charged 
and this charge is equal to the negative charge 
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of the electrons making the atoms electrically 
neutral .

It is interesting to compare the additive 
property of charge with that of mass.

 1)  The masses of the particles constituting 
an object are always positive, whereas the 
charges distributed on different parts of the 
abject may be positive or negative.

 2)  The total mass of an object is always 
positive whereas, the total charge on the 
object may be positive, zero or negative. 

10.3.2  Quantization of Charge:

The minimum value of the charge on an 
electron as determined by the Milikan's oil drop 
experiment is e = 1.6×10-19 C. This is called the 
elementary charge. Here, C stands for coulomb 
which is the unit of charge in SI system. Unit of 
charge is defind in article 10.4.3. Since protons 
(+ve) and electrons (-ve) are the charged 
particles constituting matter, the charge on 
an object must be an integral multiple of  ±e.  
q = ± ne, where n is an integer. 

Further, charge on an object can be 
increased or decreased in multiples of e. It 
is because, during the charging process an 
integral number of electrons can be transferred 
from one body to the other body. This is known 
as quantization of charge or discrete nature of 
charge.

The discrete nature of electric charge is 
usually not observable in practice. It is because 
the magnitude of the elementary electric charge, 
e, is extremely small. Due to this, the number 
of elementary charges involved in charging an 
object becomes extremely large. Suppose, for 
example, when a glass rod is rubbed with silk, 
a charge of the order of one µC (10-6 C) appears 
on the glass rod or silk. Since elementary charge 
e = 1.6×10-19 C, the number of elementary 
charges on the glass rod (or silk) is given by 

n = 
 C

C

10

1 6 10
6 25 10

6

19
12

�

��
� �

.
.

Since it is a tremendously large number, 
the quantization of charge is not observed and 
one usually observes a continuous variation of 
charge.

Example 10.1: How much positive and 
negative charge is present in 1gm of water? 
How many electrons are present in it? Given, 
molecular mass of water is 18.0 g.

Solution: Molecular mass of water is 18.0 gm, 
that means the number of molecules in 18.0 gm 
of water is 6.02×1023.

... Number of molecules in 1gm of water 
= 6.02×1023/18. One molecule of water (H

2
O) 

contains two hydrogen atoms and one oxygen 
atom. Thus the number of electrons in H

2
O 

is sum of the number of electrons in H
2
 and 

oxygen. There are 2 electrons in H
2
 and 8 

electrons oxygen.   

∴Number of electrons in H
2
O = 2+8 = 10.

Total number of protons / electrons in 1.0 

gm of water �
�

� � �
6 02 10

18
10 3 34 10

23
23.

.

Total positive charge = 3.34×1023 × charge 
on a proton

= 3.34×1023 ×1.6×10-19 C = 5.35×104 C

This positive charge is balanced by equal 
amount of negative charge so that the water 
molecule is electrically neutral. 

10.3.3 Conservation of Charge: 

We know that when a glass rod is rubbed 
with silk, it becomes positively charged and 
silk becomes negatively charged. The amount 

According to recent advancement in physics, 
it is now believed that protons and neutrons 
are themselves built out of more elementary 
units called quarks. They are of six types, 
having fractional charge (-1/3)e or +(2/3)e. A 
proton or a neutron consists of a combination 
of three quarks. It may be clearly understood 
that even in the quark model, quantization of 
charge is not affected. It is only the step size 
of the charge that decreases from e to e/3. 
Quarks are always present in bound states 
and no free quarks are known to exist. 
In modern day experiments it is possible to 
observe the discrete nature of charge in very 
sensitive divides such as single electron 
transistor

Do you know ?
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of positive charge on glass rod is found to be 
exactly the same as negative charge on silk. 
Thus, the systems of glass rod and silk together 
possesses zero net charge after rubbing. 

Result and conclusion of this experiment 
can be generalized and we can say that "in 
any given physical process, charge may get 
transferred from one part of the system to 
another, but the total charge in the system 
remains constant" or, for an isolated system 
total charge cannot be created nor destroyed. 
In simple words, the total charge of an isolated 
system is always conserved. 

10.3.4 Forces between Charges:

It was observed in carefully conducted 
experiments with charged objects that they 
experience force when brought close (not 
touching) to each other. This force can be 
attractive or repulsive. Like charges repel 
each other and unlike charges attract each 
other. Figure 10.2 describes this schematically. 
This is the reason  for charging by induction as 
described in section 10.2 and Fig. 10.1. 

 

Fig. 10.2: Attractive and repulsive force.  

10.4 Coulomb’s Law:

The electric interaction between two 
charged bodies can be expressed in terms of the 
forces they exert on each other. Coulomb (1736-
1806) made the first quantitative investigation 
of the force between electric charges. He used 
point charges at rest to study the interaction. 
A point charge is a charge whose dimensions 
are negligibly small compared to its  distance 
from another bodies. Coulomb’s law is a 
fundamental law governing interaction 
between charges at rest. 

10.4.1 Scalar form of Coulomb’s Law:

Statement : The force of attraction or 
repulsion between two point charges at rest 
is directly proportional to the product of 
the magnitude of the charges and inversely 

proportional to the square of the distance 
between them. This force acts along the line 
joining the two charges.

Let q
1
 and q

2
 be two point charges at 

rest with respect to each other and separated 
by a distance r. The magnitude F of the force 
between them is given by,   

 

F  

F = K  

r

r

2

2

α
q q

q q

1 2

1 2

   
--- (10.1)

where K is the constant of proportionality. Its 
magnitude depends on the units in which F, q

1
, 

q
2
 and r are expressed and also on the properties 

of the medium around the charges.

The force between the two charges will be 
attractive if they are unlike (one positive and one 
negative). The force will be repulsive if charges 
are similar (both positive or both negative). 
Figure  10.3 describes this schematically.  

Fig. 10.3: Coulomb’s law.  

10.4.2  Relative Permittivity or Dielectric  
Constant:

While discussing the coulomb’s law it was 
assumed that the charges are held stationery 
in vacuum. When the charges are kept in 
a material medium, such as water, mica or 
parafined paper, the medium affects the force 
between the charges. The force between the two 
charges placed in a medium may be written as,   

F =  
q q

r
 med

1 2

2

1

4��
�
�
�

�
�
�    --- (10.2) 
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where ε is called the absolute permittivity of 
the medium. The force between the same two 
charges placed in free space or vacuum at 
distance r is given by, 

F = 
q q

rvac
1 2

2

1

4 0��
�
�
�

�
�
�    --- (10.3)

Dividing Eq. (10.3) by (10.2)

 
F

F
=

q q

r
q q

r

 = vac

med

1 2

1 2

2

2

1
4

1
4

0

0

��

��

�
�

�
�
�

�
�
�

�
�
�

�
�
�

The ratio 
ε
ε0

 is the relative permittivity 
or dielectric constant of the medium and is 
denoted by ε

r
 or K.

K or 
F

F
vac

med

�
�
�r � �

0    
--- (10.4)

Thus, 

 (i)  ε
r
 is the ratio of absolute permittivity of a 

medium to the permittivity of free space.

 (ii)  ε
r
 is the ratio of the force between two point 

charges placed a certain distance apart in 
free space or vacuum to the force between 
the same two point charges when placed at 
the same distance in the given medium. 

  ε
r 
is a dimensionless quantity.

 (iii) ε
r 
is also called specific inductive capacity.

The force between two point charges q
1
 

and q
2
 placed at a distance r in a medium of 

relative permittivity ε
r
, is given by

F
q q

r
1 2

2
�

1

4 0�� � r

    --- (10.5)

For water, ε
r 
= 80 then from Eq. (10.4) 

F

F
80

F
F

80

vac

water

water
vac

� �

�

� r

This means that when two point charges 
are placed some distance apart in water, the 

force between them is reduced to 1

80
�
�
�

�
�
�

th

of the  

force between the same two charges placed at 
the same distance in vacuum. 

Thus, a material medium reduces the 

force between charges by a factor of ε
r
, its 

relative permittivity.
While using Eq. (10.5) we assume that 

the medium is homogeneous, isotropic and 
infinitely large.
10.4.3 Definition of Unit Charge from the 
Coulomb’s Law: 

The force between two point charges q
1
 

and q
2
, separated by a distance r in free space, is 

written by using Eq. (10.2), 

F
q q

r

q q

r
1 2

2
1 2

2
� � � � �

1

4
9 10

0

9

��
ε

0
 = 8.85 10-12 C2 N-1 m-2

If       q
1
= q

2
= 1C and r = 1.0 m

Then  F = 9.0109 N

From this, we define, coulomb (C) the unit 
of charge in SI units.

One coulomb is the amount of charge 
which, when placed at a distance of one 
metre from another charge of the same 
magnitude in vacuum, experiences a force of 
9.0 × 109 N. This force is a tremendously large 
force realisable in  practical situations. It is, 
therefore, necessary to express the charge in 
smaller units for practical purpose. Subunits 
of coulomb are used in electrostatics. For 
example, micro-coulomb (10-6 C, µC), nano-
coulomb (10-9 C, nC) or pico-coulomb. (10-12 C, 
pC) are normally used units.

Force between two charges of 1.0 C each, 
separated by a distance of 1.0 m is 9.0×109 N 
or, about 10 million metric tonne. A normal 
truck-load is about 10 metric tonne. So, this 
force is equivalent to about one million truck-
loads. A tremendously large force indeed !

Do you know ?

Example 10.2: Charge on an electron is 
1.6×10-19 C. How many electrons are required 
to accumulate a charge of one coulomb?

Solution: 1.610-19 C = 1 electron

� �
�

� � � �

�1
1

1 6 10

0 625 10 6 25 10

19

19 18

C
.

. .

 electrons

      electronns

6.25×1018 electrons are required to 
accumulate a charge of  one coulomb.
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 It is now possible to measure a very 
small amount of current in otto-amperes 
which measures flow of single electron. 

10.4.4 Coulomb’s Law in Vector Form:

As shown in Fig 10.4, q
1
 and q

2
  are two 

similar point charges situated at points A and B. 
r

12
 is the distance of separation between them. 

 F21

��
 denotes the force exerted on q

2
 by q

1

F
q q

r21
1 2

�

�
�� � �

1

4 0 21

2 21
�� r   

  --- (10.6)

Fig. 10.4: Coulomb’s law in vector form

 r21
  is the unit vector along AB , away 

from B. Similarly, the force F12



 exerted on q
1
 

by q
2
 is given by 

F
q q

r12
1 2

2 12

� �� � �
1

4 0 12
�� r    

--- (10.7)

r12
 is the unit vector along BA , away from 

A. F12



 acts on q
1
at A and is directed along BA, 

away from A. The unit vectors r12
  and r21

  are 

oppositely directed i.e., r r12 21
 � �  hence, 

 F21

��
 = - F12



   

Thus, the two charges experience force 
of equal magnitude and opposite in direction. 
These two forces form an action- reaction pair. 

As  F21

��
and F12



 act along the line joining 
the two charges, the electrostatic force is a 
central force.

Example 10.3: Calculate and compare the 
electrostatic and gravitational forces between 
two protons which are 10-15 m apart. Value of  
G = 6.674×10-11 m3 kg-1 s-2 and mass of the 
proton is 1.67×10-27 kg

Solution: The electrostatic force between the 

protons is given by Fe �
1

4 0
2��

q q

r
1 2

Here,  q
1
 = q

2
  = +1.6×10-19 C, r = 10-15m 

   

� � �
� �

� � �

� �

�Fe  
 

        

9 10
1 6 10 1 6 10

10

9 1 6 1

9
19 19

15 2

( . ) ( . )

( )

. .66 10

2 3 10

1

2

�

� �

N

    N Fe .      --- (10.8.a)

The gravitational force between the 
protons is given by

F

F

g

g

= G
m m

r

 

1 2
2

�
� � � � �

�

� � �

�

6 674 10 1 67 10 1 67 10

10

1

11 27 27

15 2

. . .

( )

.. N86 10 34� � --- (10.8.b)

Comparing 10.8. (a) and 10.8.(b)
F

F
e

g

�
�
�

�
�

�

2 30 10

1 86 10

2

34

.

. N

N
 = 1.23 1036

 

Thus, the electrostatic force is about 
36 orders of magnitude stronger than the 
gravitational force.

Comparison of gravitational and 
electrostatic forces:

Similarities
 1.  Both forces obey inverse square law : 

F ∝
1

r2
 

 2.  Both are central forces : act along the 
line joining the two objects. 
Differences

 1.  Gravitational force between two objects 
is always attractive while electrostatic 
force between two charges can be 
either attractive or repulsive depending 
on the nature of charges.

 2.  Gravitational force is about 36 
orders of magnitude weaker than the 
electrostatic force. 

10.5 Principle of Superposition:

The principle of superposition states that 
when a number of charges are interacting, 
the resultant force on a particular charge is 
given by the vector sum of the forces exerted by 
individual charges.

Consider a number of point charges q
1
, q

2
, 

q
3
 ------- kept at points A

1
,  A

2
, A

3
--- as shown 

in Fig. 10.5. The force exerted on the charge 

q
1
 by q

2
 is F12



. The value of F12



 is calculated 

1
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by ignoring the presence of other charges. 
Similarly, we find F13



 , F14



 etc, one at a time, 
using the coulomb’s law.

F12

F13

F14

F15

A1

q1

A5

q5

A4

q4A3

q3

A2

q2

Fig. 10.5: Principle of superposition. 
Total force F

��
1  on charge q

1
 is the vector 

sum of all such forces.

F F F F

q q

r
r

q q

r
r

1 12 13 14

1 2

12

2
1 3

13

2

� � � �

� � � �

� � � �

� � �

...

..
1

4 0

12 13
��

.. ,
�

�

�
�
�

�

�

�
�
�

where  r r 

12 13,  etc., are unit vectors directed to 
q

1
 from q

2
, q

3
  etc., and r

12
, r

13
, r

14
,etc., are the 

distances from q
1
 to q

2
, q

3
 etc respectively.

Let there be N point charges q
1
, q

2
,q

3
 

etc., q
N
. The force F

��
 exerted by these charges 

on a test charge q
0
 can be written using the 

summation notation Σ as follows,
F F F F Ftest N

    

� � � � � � � �1 2 3   --- (10.9)

�� �F =     
q q

r
rn

n=1

N
0 n

n=1

N1

4 0 0
2 0

�� n

n


       
--- (10.10)

Where  r0n  is a unit vector directed from the 
nth charge to the test charge q

o
 and r

0n
 is the 

separation between them,  r r rn n n

� �
0 0 0=  

     

 
C

A

2µC 3µC

4µC

B

θ

Solution : Given, 

 AB = 4.0 cm, BC = 3.0 cm

   � � �AC =  cm4 3 5 02 2 .

Magnitude of force F AB

��
 on A due to B is,

F AB

��
�
�

�
�

�

�
�
� � �

�

�
� �
�

� �

�

1

4

2 10 3 10

4 10

9 10 6

16

0

6 6

2 2

9

�� ( )

        
110

10
4

12
�

��

�

  

        = 3.37 10

        = 33.7 N 

This force acts at point A and is directed 
along BA

� ���
 (Fig. (b)). 

 F
��

A
F AB

��

F AC

��

Fig. b: Forces acting at point A.

Magnitude of force F AC

��
 on A due to C is,

F AC

��
�
�

�
�

�

�
�
� � �

�

�
� �

� �

�

1

4

2 10 4 10

5 10

9 10 8 0

0

6 6

2 2

9

�� ( )

.
         

��
�

� � �

�

�

10

25 10
72

25
10 28 8

12

4

            N.

This force acts at point A and is directed 
along CA

� ���
. (Fig. 10.6.(b))

F = F +FAB AC

�� �� ��

Magnitude of resultant force is,

F =  

     N

1/2F F F FAC AB AC AB
2 2 2

59 3

� � � ��� ��
�

cos

.

�

Three charges, q each, are placed at the 
vertices of an equilateral triangle. What will 
be the resultant force on charge q placed at 
the centroid of the triangle?

Can you tell?

Example 10.4: Three charges of 2µC, 3µC 
and 4µC are placed at points A, B and C 
respectively, as shown in Fig. a. Determine the 
force on A due to other charges.

4 cm

3 cm

Fig. a: Position of charges. 

F AC

��

F AB

��
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electric field of a charge is also a vector and 
is directed along the direction of the coulomb 
force, experienced by a test charge.

The magnitude of electric field at a distance 
r from a point charge Q is same at all points on 
the surface of a sphere of radius r as shown in 
Fig. 10.6. Its direction is along the radius of 
the sphere, pointing away from its centre if the 
charge is positive.  

E
��

E
Q

r
�

4 0
2��+

Fig. 10.6: Electric field due to a point charge 
(+Q). 

SI unit of electric intensity is newton per 
coulomb (NC-1). Practically, electric field 
is expressed in volt per metre(Vm-1). This is 
discussed in article 10.6.2.

Dimensional formula of E is,

 

E
F

E

q
=

0

 

 

[IT]

= [ I

�
�

� �

[LMT ]

LMT ]

2

3 1

 

10.6.1 Electric Field Intensity due to a Point 

           Charge in a Material Medium:

Consider a point charge q placed at point O 
in a medium of dielectric constant K as shown 
in Fig. 10. 7.

q
0

q

Fig. 10.7: Field in a material medium. 
Consider the point P in the electric field of 

point charge q at distance r from it. A test charge 
q

0
 placed at the point P will experience a force 

which is given by the Coulomb’s law,

A precise definition of electric field is: 
Electric field is the force experienced by a 
test charge in presence of the given charge at 
the given distance from it.

E
F

qq
�

�
lim

0

��
 

Test charge is a positive charge so 
small in magnitude that it dose not affect the 
surroundings of the given charge.

Direction of the resultant force is 16.9° 
north of west. (Fig. c)

 F
��

A
 16.9°

N

W
F AB

��

F AC

��

 Fig. c: Direction of the resultant force.  

10.6 Electric Field:

Space around a charge Q gets modified so 
that when a test charge is brought in this region, 
it experiences a coulomb force. This region 
around a charged object in which coulomb 
force is experienced by another charge is called 
electric field.

Mathematically, electric field is defined as 
the force experienced per unit charge. Let Q and 
q be two charges separated by a distance r. 

The coulomb force between them is given 

by F
Qq

r
r

�� ��
1

4 0
2��

, where, r  is the unit vector 

along the line joining Q to q.

Therefore, electric field due to charge Q is 
given by,

   
E

F

q

Q

r
r

�� ��
�� �

4 0
2��             

--- (10.11)

The coulomb force acts across an empty 
space (vacuum) and does not need any 
intervening medium for its transmission.

The electric field exists around a charge 
irrespective of the presence of other charges.

Since the coulomb force is a vector, the 

k
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F
K

q q

r
r

�� ��
1

4 0��
0

2
 
 

where r  is the unit vector in the direction of 
force i.e., along OP.

By the definition of electric field intensity

E
F

q

q

r
r

�� ��
�� �

0
2

 
1

4 0�� K

The direction of E
��

 will be along OP when 
q is positive and along PO when q is negative.

The magnitude of electric field intensity in 
a medium is given by 

  
E

K

q

r
�

1

4 0�� 2

            
--- (10.12 )

For air or vacuum K = 1 then

 
E

q

r
=

2

1

4 0��  

The coulomb force between two charges 
and electric field E of a charge both follow the 
inverse square law, (F∝1/r2, E∝1/r2)  Fig. 10.8.   

F∝1/r2, E∝1/r2

Fig. 10.8: Variation of Coulomb force/
Electric field due to a point charge.

 1.  Uniform electric field: A uniform electric 
field is a field whose magnitude and 
direction is same at all points. For example, 
field between two parallel plates. Fig 10.9.a  

 2.  Non uniform electric field: A field whose 
magnitude and direction is not the same at 
all points. For example, field due to a point 
charge. In this case, the magnitude of field 
is same at distance r from the point charge 
in any direction but the direction of the 
field is not same. Fig 10.9.b 

             

Fig. 10.9 (a): 
uniform  electric 
field.

 

      

Fig. 10.9 (b): 
non uniform 
electric field.

10.6.2 Practical Way of Calculating Electric 

    Field 

A pair of charged parallel plates is 
arranged as shown in Fig. 10.10. The electric 
field between them is uniform. A potential 
difference V is applied between two parallel 
plates separated by a distance ‘d’. The electric 
field between them is directed from plate A to 
plate B as shown. 

     

Fig 10.10: Electric field 
between two parallel 
plates.

A charge +q placed between the plates 
experiences a force F due to the electric field. If 
we have to move the charge against the direction 
of field, i.e., towards the positive plate, we have 
to do some work on it. If we move the charge 
+q from the negative plate B to the  positive 
plate A, the work done against the field is  
W = Fd; where ‘d’ is the separation between the 
plates. The potential difference V between the 
two plates is given by

 W = Vq, but W = Fd

 ∴Vq = Fd ∴ F/q = V/d = E

    ∴ Electric field can be defined as 

 E = V/d            --- (10.13)

This is the commonly used definition of 
electric field.

E 

or 

F

r

A            B
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Example 10.5: Gap between two electrodes of 
the spark-plug used in an automobile engine 
is 1.25 mm. If the potential of 20 V is applied 
across the gap, what will be the magnitude of 
electric field between the electrodes?

Solution: 

E
V

d

E
V

m

V

m

�

�
�

� � � ��
�20

1 25 10
16 10 1 6 10

3
3 4

.
.

This electric field is sufficient to ionize 
the gaseous mixture of fuel compressed in the 
cylinder and ignite it.

Why a small voltage can produce a 
reasonably large electric field?

Can you tell?

magnitudes and are opposite  in direction, 
E = - EA C 

�� ��
. E + EA C 

�� ��
= 0 . Thus, the field at P is 

only to the charge at B and can be written as 

E E
BP

E

     

p B 

p

�� ��

��

� �
�

�
� � �

�
�

�

�

2 10
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2 10 9 10

5 2
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2

�� ( )

( / )

�� �
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10 2

25
36

25
10

1 44 10

3

3

15

     

      NC  along -1. BP
� ���

To calculate BP

 
BP BA) cos (45)
� ���

� � �(
5

2

Example 10.7: A simplified model of hydrogen 
atom consists of an electron revolving about a 
proton at a distance of 5.3×10-11m.  The charge 
on a proton is +1.6×10-19 C. Calculate the 
intensity of the electric field due to proton at 
this distance.

Solution:

E
q

r

q C

r m

Nm C

E

o

o

�

� � �

� �

� �

�

�

�

�

4

1 6 10

5 3 10

1

4
9 0 10
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2

19
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9 2 1
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.

.

.
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5 3 10
9 0 10 5 1 10

19

11 2
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�

�
� 

( . )
. . NC

The force between electron and proton in 
hydrogen atom can be calculated by using the 

electric field. We have, E
F

q
F qE� � �

F = -1.6×10-19 C× 5.1×1011 NC-1

      = -8.16×108 N. 

This force is attractive.

Using the Coulomb's law,

 F
q q

r

Nm C
C C

�

� � �
� � � � ��

� �

1

4

9 0 10
1 6 10 1 6 10

5

0

1 2
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9 2 1
19 19

��

.
( . ) ( . )

( .33 10

8 6 10

11 2

8

�
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� m

N

)

.

Knowing electric field at a point is useful 
to estimate the force experienced by a charge 
at that point.

Example 10.6: Three point charges are placed 
at the vertices of a right isosceles triangle as 
shown in the Fig. a. What is the magnitude and 
direction of the resultant electric field at point P 
which is the mid point of its hypotenuse? 

      

P

B

+10 µC

A 5cm

5cm
EC 

��

EA

�� EB 

��

   
         Fig (a): Position of charges. 

P

EC 

��

EA

��
EB 

��

Fig (b): Electric field at point P.

Solution: Electric field is the force an a unit 
positive charge, the fields at P due to the charges 
at A, B and C are shown in the Fig. b. EA

��
 is the 

field at P due to charge at A and  EC

��
 is the field 

at P due to charge at C. Since P is the midpoint 
of AC and the fields at A and C are equal in 

+2 µC

C

+10 µC



198

10.6.3 Electric Lines of Force:

Michael Faraday (1791-1867) introduced 
the concept of lines of force for visualising 
electric and magnetic fields. An electric line of 
force is an imaginary curve drawn in such a 
way that the tangent at any given point on this 
curve gives the direction of the electric field 
at that point. See Fig.10.11. If a test charge is 
placed in an electric field it would be acted upon 
by a force at every point in the field and will 
move along a path. The path along which the 
unit positive charge moves is called a line of  
force.

 
Fig. 10.11: Electric line of force. 
A line of force is defined as a curve such 

that the tangent at any point to this curve gives 
the direction of the electric field at that point.

The density of field lines indicates the 
strength of electric fields at the given point in 
space.  Figure 10.12.

      

Fig. 10.12: density 
of field lines and 
strength of electric 
field.

Characteristics of electric lines of force 

 (1)  The lines of force originate from a 
positively charged object and terminate on 
a negatively charged object.

 (2) The lines of force neither intersect nor meet 
each other, as it will mean that electric field 
has two directions at a single point. 

 (3) The lines of force leave or terminate on a 
conductor normally. 

 (4) The lines of force do not pass through 
conductor i.e. electric field inside a 
conductor is always zero, but they pass 
through insulators.

 (5) Magnitude of the electric field intensity 
is proportional to the number of lines 
of force per unit area of the surface held 
perpendicular to the field.

 (6) Electric lines of force are crowded in a 
region where electric intensity is large. 

 (7) Electric lines of force are widely separated 
from each other in a region where electric 
intensity is small

 (8) The lines of force of an uniform electric 
field are parallel to each other and are 
equally spaced.
The lines of force are purely a geometric 

construction which help us visualise the nature 
of electric field in a region. The lines of force 
have no physical existence.

  

Fig. 10.13 (a): Lines 
of force due to positive 
charge.

    

Fig. 10.13 (b): Lines of 
force due to negative 
charge.

 

Fig. 10.13 (c): Lines 
of force due to 
opposite charge.

  

Fig. 10.13; (d): 
Lines of force 
due to similar 
charge.

      

Fig. 10.13 (e): Lines 
of force terminate 
on a conductor.

 

Fig. 10.13 (f): Intensity 
of a electric field is more 
at point A and less at B. 
More lines cross the area 
at A and less at the same 
area at B.  

Fig. 10.13: The lines of force due to various 
geometrical arrangement of electrical charges. 

Lines of force are imaginary, can they 
have any practical use?

Can you tell?

(Low field)

(High field)
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10.7 Electric Flux:

As discussed previously, the number of 
lines of force per unit area is the intensity of the 
electric field E

��
. 

...E =      Number of lines of force
       Area enclosing the lines of force  

- (10.14)

 

Fig. 10.14: Flux through area S.

Number of lines of force = (E).(Area) 
When the area is inclined at an angle θ with the 
direction of electric field, Fig. 10.14, the electric 
flux can be calculated as follows. 

Let the angle between electric field E
��

 
and area vector d S



 be θ, then the electric flux 
passing through area dS is given by  

dφ = (component of dS along E
��

).(area of d S


) 

dφ = E (dS cos θ) 
dφ = EdS cos θ       

dφ = E
�� .d S



               --- (10.15)

Total flux through the entire surface

 � � � �� �d E dS E S
s

�
�� �� �� ��

. .             --- (10.16)

The SI unit of electric flux can be calculated 
using, 

� � �E S
�� ��

 =(V/m) m2 =Vm

10.8 Gauss' Law: 

Karl Friedrich Gauss (1777-1855) one 
of the greatest mathematician of all times, 
formulated a law expressing the relationship 
between the electric charge and its electric field 
which is called the Gauss’ law. Gauss' law is 
analongous to Coulomb’s law in the sense that it 
too expresses the relationship between electric 
field and electric charge. Gauss' law provides 
equivalent method for finding electric intensity. 
It relates values of field at a closed surface and 
the total charges enclosed by that surface.

Consider a closed surface of any shape 
which encloses number of positive electric 
charges (Fig. 10.15). To prove Gauss’ theorem, 

imagine a small charge +q present at a point O 
inside closed surface. Imagine an infinitesimal 
area dA of the given irregular closed surface.

Fig. 10.15: Gauss' law.

The magnitude of electric field intensity at 
point P on dS due to charge +q at point O is,

E
q

r2
=          

1

4 0��
�
�
�

�
�
�

The direction of E is away from point O. 
Let θ be the angle subtended by normal drawn 
to area dS and the direction of E. Electric flux, 
dφ, passing through area dS,  = Ecosθ dS
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 cos

r2

dS

dS

d d

             

--- (10.17)

where, d
dS

r
�

�
=

 cos
2  is the solid angle 

subtended by area dS at point O.

Total electric flux, φ
E
, crossing the given 

closed surface can be obtained by integrating 
Eq. (10.17) over its area. Thus,

�E

s

d E ds
q

d
q

d� � � �� � � ��
��

�
��

�
�� ���

.
4 40 0

 

But d� �� � �4  solid angle subtended by 
entire closed surface at point O

Total flux

           

�

� � � ��

q

E ds q
s

4
4

0

0

��
�

�

( )

/�E

�� ���
     --- (10.18)

This is true for every electric charge 
enclosed by a given closed surface.

Total flux due to charge q
1
, over the given 

closed surface = + q
1
/ε0
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Total flux due to charge q
2
, over the given 

closed surface = + q
2
/ε0

Total flux due to charge q
n
, over the given 

closed surface = + q
n
/ε0

Positive sign in Eq. (10.18) indicates that 
the flux is directed outwards, away form the 
charge. If the charge is negative, the flux will 
be is directed inwards as shown in Fig 10.16 
(b). If a charge is outside the closed surface the 
net flux through it will be zero Fig 10.16 (c).

 

Fig. 10.16 (a): Flux due to positive charge.

   

Fig. 10.16 (b): Flux due to negative charge. 

                      

Fig. 10.16 (c): Flux due to charge outside a 
closed surface is zero.

According to the superposition principle, 
the total flux φ due to all charges enclosed 
within the given closed surface is

 
�E

q q q q q Q
 =  +  +  + ---- +  =1 2 3 n i

� � � � � �0 0 0 0 0 0

��
i=1

i=n

Statement of Gauss' law

The flux of the net electric field through a 
closed surface equals the net charge enclosed by 
the surface divided by  ε

0

 

where Q is the total charge within the surface. 

Gauss' law is applicable to any closed 
surface of regular or irregular shape.

Example 10.8: A charge of  5.0  C is kept at the 
centre of a sphere of radius 1 m. What is the flux 
passing through the sphere? How will this value 
change if the radius of the sphere is doubled? 

Solution: Flux per unit area is given by Eq. 
10.16.

According to Gauss  law, the total flux 

through the sphere � � � E ds
�� ���

. , where the 
integration is over the surface of the sphere. As 
the electric field is same all over the sphere i.e. 
| |E = constant and the direction of E  as well as 
that of ds is along the radius, we get    

  

flux = = | | 4 R

4 r
 C

2 
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� E

E

E
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flux = 4.5 10

10 Vm

-1

10
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�
�

E S
��� ��

( )

.    

Thus the total flux is independent of radius.

E ∝ 1/r2, and area ∝ r2. This can also be seen 
from Gauss' law, where the net flux crossing a 
closed surface is equal to q/ε0 where q is the net 
charge inside the closed surface. As the charge 
inside the sphere is unchanged, the flux passing 
through a sphere of any radius is the same. 
Thus, if the radius of the sphere is increased 
by a factor of 2, the net flux passing through 
its surface remains unchanged. As shown in  
Fig. 10.17, same number of lines of force cross 
both the surfaces. The total flux is independent 
of shape of the closed surface because Eq. 10.18 
does not involve any radius.   

 

Fig. 10.17: Flux is independent of the shape 
and size of closed surface.
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10.9 Electric Dipole:

A pair of equal and opposite charges 
separated by a finite distance is called an electric 
dipole. It is shown in Fig. (10.18).

 
Fig. 10.18: Electric dipole. x-y axial line, 
P-Q equatorial line.

Line joining the two charges is called the 
dipole axis. A line passing through the dipole 
axis is called axial line. A line passing through 
the centre of the dipole and perpendicular to the 
axial line is called the equatorial line as shown 
in Fig. 10.18.

Strength of a dipole is measured in terms 
of a quantity called  the dipole moment. Let 

q be the magnitude of each charge and 2l


 be 
the distance from negative charge to positive 
charge. Then the product q ( 2l



) is called the 

dipole moment p
��

.
Dipole moment is defined as 
 p

��
 = q( 2l



)             --- (10.19)
A dipole moment is a vector whose 

magnitude is q (2l) and the direction is from 
the negative to the positive charge. The unit of 
dipole moment is Columb-meter (Cm) or Debye 
(D). 1D = 3.33×10-30 Cm. If two charges +e and 
-e are separated by 1.0A0, the dipole moment is 
1.6×10-29 Cm or 4.8 D.   For example, a water 
molecule has a permanent dipole moment of 

Gaussian surface
All the lines of force originating from 

a point charge penetrate an imaginary  
three dimensional surface. The total flux  
Φ

E
 = q/ε

0
. The same number of lines of force 

will cross the surface of any shape. The 
total flux through both the surfaces is the 
same. Calculating flux involves calculating 

E ds
�� ���
� � , hence it is convenient to consider a 
regular surface surrounding the given charge 
distribution. A surface enclosing the given 
charge distribution and symmetric about it is 
a Gaussian surface.

For example. if we have a point charge 
the Gaussian surface will be a sphere. If the 
charge distribution is linear, the Gaussian 
surface would be a cylinder with the charges 
distributed along its axis. Gaussian surface 
offers convenience of calculating  the 
integral E ds

�� ���
� � . 

Remember that a Gaussian surface 
is purely imaginary and does not exist 
physically.        

Do you know ?

Natural dipole:
The water molecule is non-linear, i.e., 

the two hydrogen atoms and one oxygen atom 
are not in a straight line. The two hydrogen-
oxygen bonds in water molecule are at an 
angle of 105°. The positive charge of a water 
molecule is effectively concentrated on the 
hydrogen side and the negative charge on 
the oxygen side of the molecule. Thus,  the 
positive and negative charges of the water 
molecule are inherently separated by a small 
distance. This separation of positive and 
negative charges gives rise to the permanent 
dipole moment of a water molecule.

Molecules of water, 
ammonia, sulphur di-
oxide, sodium chloride 
etc. have an inherent 

separation of centers of positive and 
negative charges. Such molecules are called 
polar molecules.

Polar molecules are the molecules in 
which the center of positive charge and 
the negative charge is naturally separated.

Molecules such as H
2
, Cl

2
, CO

2 
CH

4
 and 

many others have their positive and negative 
charges effectively centered at the same 
point and are called non-polar molecules.

Non-polar molecules are the 
molecules in which the center of positive 
charge and the negative charge is one and 
the same. They do not have a permanent 
electric dipole. When an external electric 
field is applied to such molecules the centers 
of positive and negative charge are displaced 
and a dipole is induced. 
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6.172×10-30 Cm or 1.85 D. Its direction is from 
oxygen to hydrogen. See box on Natural dipole. 

10.9.1 Couple Acting on an Electric Dipole in 
        a Uniform Electric Field:

Consider an electric dipole placed in a 
uniform electric field E. The axis of electric 
dipole makes an angle θ with the direction of 
electric field as shown in Fig. 10.19 a.  

 
Fig. 10.19 (a): Dipole in uniform electric field.

Fig. 10.19 (b): Couple acting on a dipole.
Figure 10.19. b shows the couple acting on 

an electric dipole in uniform electric field.

The force acting on charge - q at A is

F A

��
= - qE
��

 in the direction opposite to that  
of  E
��

 and the force acting on charge +q at B 

is F B

��
= + qE
��

 in the direction of E
��

. Since F A

��

= - F B

��
, the two equal and opposite forces 

separated by a distance form a couple. Moment 
of the couple is called torque and is defined by
�
� �� ��
� �d F  where, d is the perpendicular distance 

between the two equal and opposite forces. 
...Magnitude of Torque = 
Magnitude  of force × Perpendicular distance

... Torque on the dipole = �
� � ��� ��
� �BP qE  

... τ = qE2lsinθ               --- (10.20)

but p q l
�� �
� �2

... τ = pEsinθ              --- (10.21)
In vector form �

� �� ��
� �p E             --- (10.22)

If θ =90° sin θ =1, then τ = pE
When the axis of electric dipole is 

perpendicular to uniform electric field, torque 
of the couple acting on the electric dipole is 
maximum, i.e., τ = pE. It θ = 0 then τ = 0, this is 
the minimum torque on the dipole. Torque tends 
to align the dipole axis along the direction of 
electric field. 

Example 10.9: An electric dipole of length 2.0 
cm is placed with its axis making an angle of 
30° with a uniform electric field of 105 N/C. as 
shown in figure. If it experiences a torque of 
10 3  Nm, calculate the magnitude of charge on 
the dipole.

P
Solution: Given
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10.9.2 Electric Intensity at a Point due to an 
Electric Dipole:

Case 1 : At a point on the axis of a dipole. 

Consider an electric dipole consisting of 
two charges -q and +q separated by a distance 
2l as shown in Fig. 10.20. Let P be a point at a 
distance r from the centre C of the dipole. The 

electric intensity Ea

��
 at P due to the dipole is the 

vector sum of the field due to the charge - q at 
A and + q at B.

                           

Fig. 10.20: Electric field of a dipole along 
its axis.  

Electric field intensity at P due to the 
charge -q at A  

= E A

�� ��
�1

4 0
2��

( )

( )

q

lr +
PD 

where PD  is unit vector directed along PD
� ���

Electric intensity at P due to charge +q at B 

= E B

�� ��
1

4 0
2��

q

l( )r -
PQ 

where PQ  is a unit vector directed along PQ
� ���

.

PQ
� ���

PQ
� ���

PQ
� ���

PD
� ���
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where PQ   is the unit vector directed along PQ
� ��

 
or BP
� ��

 

Electric field at P is the, sum of E EA B

�� ��
 and    

∴E E Eeq A B

�� �� ��
= +  

Consider ∆ ACP

(AP)2 = (PC)2 + (AC)2 = r2 + l2 = (BP)2 

� �
�

E A
q�� 1

4 0

2 2�� ( )r l           
--- (10.25)

E
q��

B
l

�
�

1

4 0
2 2�� (r )

                        --- (10.26)

E EA B

�� ��
=

The resultant of fields  E A

��
 and E B

��
 acting 

at point P can be calculated by resolving these 
vectors E A

��
 and E B

��
 along the equatorial line 

and along a direction perpendicular to it. 

       

Fig. 10.21 (b): 
Components of 
the field at point 
P. 

Consider Fig. 10.21 (b). Let the y-axis 
coincide with the equator of the dipole x-axis 
will be parallel to dipole axis, as shown. The 
origin is at point P.

The y-components of E
A
 and E

B
 are E

A
sinθ 

and E
B
sinθ respectively. They are equal in 

magnitude but opposite in direction and cancel 
each other. There is no contribution from them 
towards the resultant.

The x-components of E
A
 and E

B
 are E

A
cosθ 

and E
B
cosθ respectively. They are of equal 

magnitude and are in the same direction

∴ | E E EA B

��
eq | cos cos� �� �        --- (10.27)

By using Eq. 10.25 and 10.26
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The magnitude of E B

��
 is greater than that of 

E A

��
. (Because BP < AB)

Resultant field Ea

��
 at P on the axis, due to 

the dipole is

Ea

��
= E B

��
+ E A

��
 

The magnitude of Ea

��
 is given by
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But 2 = p, the dipole moment 

=
1

  
2

l

Ea
pr

l

q

| |
(r )

��

4

2

0
2 2�� �       --- (10.23)

Ea

��
, is directed along PQ, which is the 

direction of the dipole moment p
��

 i.e. from the 
negative to the positive charge, parallel to the 
axis. If r>> l, l2 can be neglected compared to r2, 

  
E =

1 p
a

��

4

2

0
3�� r            

--- (10.24)

The field will be along the direction of the 

dipole moment p
��

.

Case 2: At a point on the equatorial line. As 
shown in Fig. 10.21 (a) 

  

r

  

Fig. 10.21 (a): 
Electric field of a 
dipole at a point on 
the equatorial line.

Electric field at point P due to charge -q at 

A is:   E A

�� � ���
�

�1

4 0
2��

( )

( P)

q

A
PA

where  is the unit vector direction along PA
� ���

. 

Similarly, Electric field at P due to charge + q at 

B is:   E B

�� � ���
�

�1

4 0
2��

( )

(BP)

q
PQ

E EA B

�� ��
 and  

PA
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If r>>l then l
2
 is very small compared to r2 

E
(r ) r

eq /

��
� �

1

4

1

40
2 3 2

0
3�� ��

p p
  

  
--- (10.28)

The direction of this field is along - p
��

 (anti-

parallel to p
��

) as shown in Fig. 10.21 (c). 

 

Fig. 10.21 (c): 
Electric field at 
point P is anti-

parallel to p
��

. 
Comparing Eq. 10.28 and 10.24 we find 

that the electric intensity at an axial point is 
twice that at a point on the equatorial position, 
lying at the same distance from the centre of 
the dipole. 

10.10 Continuous Charge Distribution:

A system of charges can be considered as 
a continuous charge distribution, if the charges 
are located very close together, compared 
to their distances from the point where the 
intensity of electric field is to be found out.

The charge distribution is continuous 
in the sense that, a system of closely spaced 
charges is equivalent to a total charge which 
is continuously distributed along a line or a 
surface or a volume. To find the electric field 
due to continuous charge distribution, we define 
following terms for different types of charge 
distribution.

(a) Linear charge density (l).

As shown in Fig. 10.22 charge q is 
uniformly distributed along a liner conductor of 
length l. The linear charge density l is defined 
as, 

� �
q

l
           --- (10.29)

SI unit of l is (C/m).
For example, charge distributed uniformly 

on a straight thin rod or a thin nylon thread. If 
the charge is not distributed uniformly over the 
length of thin conductor then charge dq on small 
element of length dl can be written as dq = ldl 

 

Fig. 10.22: Linear charge.

(b) Surface charge density (σ)

Suppose a charge q is uniformly distributed 
over a surface of area A . As shown in Fig. 10.23, 
then the surface charge density σ is defined as

 
� �

q

A    
        --- (10.30)

SI unit of σ  is (C/m2)

For example, charge distributed uniformly 
on a thin disc or a synthetic cloth. If the charge 
is not distributed uniformally over the surface 
of a conductor, then charge dq on small area 
element dA can be written as dq = σ dA. 

 
Fig. 10.23: Surface charge.

(c) Volume charge density (ρ) 

Suppose a charge q is uniformly distributed 
throughout a volume V, then the volume charge 
density ρ is defined as the charge per unit 
volume.

� �
q

V     
       --- (10.31)

S.I. unit of ρ is (C/m3) 
For example, charge on a solid plastic 

sphere or a solid plastic cube. 

If the charge is not distributed uniformaly 
over the volume of a material, then charge dq 
over small volume element dV can be written 
as dq = ρ dV. 

Fig. 10.24:Volume charge.

Electric field due to a continuous charge 
distribution can be calculated by adding electric 
fields due to all these small charges. 

The surface charge density of Earth is 
σ = -1.33 nC/m2. That is about 8.3×109 
electrons per square meter. If that is the 
case why don't we feel it? 

Can you tell?
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Internet my friend

1. Choose the correct option.
 i. A positively charged glass rod is brought 

close to a metallic rod isolated from 
ground. The charge on the side of the 
metallic rod away from the glass rod will 
be 

  (A) same as that on the glass rod and equal 
in quantity

  (B) opposite to that on the glass of and 
equal in quantity 

  (C) same as that on the glass rod but  lesser 
in quantity

  (D)  same as that on the glass rod but more 
in quantity  

 ii. An electron is placed between two 
parallel plates connected to a battery. If 
the battery is switched on, the electron 
will

  (A) be attracted to the +ve plate 
  (B) be attracted to the -ve plate 
  (C) remain stationary 
  (D) will move parallel to the plates
 iii. A charge of + 7 µC is placed at the centre 

of two concentric spheres with radius 2.0 
cm and 4.0 cm respectively. The ratio of 
the flux through them will be 

Exercises Exercises

  (A) 1:4  (B) 1:2  
  (C) 1:1  (D) 1:16
 iv. Two charges of 1.0 C each are placed 

one   meter apart in free space. The force 
between them will be

  (A) 1.0 N (B) 9×109 N 
  (C) 9×10-9 N (D) 10 N 
 v. Two point charges of +5 µC are so 

placed that they experience a force of  
80×10-3 N. They are then moved apart, 
so that the force is now 2.0×10-3 N. The 
distance between them is now

  (A) 1/4 the previous distance 
  (B) double the previous distance 
  (C) four times the previous distance
  (D) half the previous distance
 vi. A metallic sphere A isolated from ground 

is charged to +50 µC. This sphere is 
brought in contact with other isolated 
metallic sphere B of half the radius of 
sphere A. The charge on the two sphere 
will be now in the ratio 

  (A) 1:2  (B) 2:1
  (C) 4:1  (D) 1:1
 vii. Which of the following produces uniform 

electric field? 

Do you know ?

Static charge can be useful
Static charges can be created whenever 

there is a friction between an insulator and 
other object. For example, when an insulator 
like rubber or ebonite is rubbed against 
a cloth, the friction between them causes 
electrons to be transferred from one to the 
other. This property of insulators is used 
in many applications such as Photocopier, 
Inkjet printer, Panting metal panels, 
Electrostatic precipitation/separators etc.
Static charge can be harmful
 i.  When charge transferred from one body 

to other is very large sparking can take 
place. For example lightning in sky. 

 ii. Sparking can be dangerous while 
refuelling your vehicle.

 iii. One can get static shock if charge 
transferred is large. 

 iv. Dust or dirt particles gathered on 
computer or TV screens can catch static 
charges and can be troublesome. 

Precautions against static charge
 i.  Home appliances should be grounded.
 ii. Avoid using rubber soled footwear.
 iii.  Keep your surroundings humid. (dry air 

can retain static charges).
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  (A) point charge 
  (B) linear charge
  (C) two parallel plates
  (D) charge distributed an circular any 

 viii. Two point charges of A = +5.0 µC and 
B = -5.0 µC are separated by 5.0 cm. 
A point charge C = 1.0 µC is placed 
at 3.0 cm away from the centre on the 
perpendicular bisector of the line joining 
the two point charges. The charge at C 
will experience a force directed towards  

  (A) point A   
  (B) point B
  (C) a direction parallel to line AB
  (D) a direction along the perpendicular 
                 bisector 

2. Answer the following questions.
 i. What is the magnitude of charge on an 

electron?
 ii. State the law of conservation of charge.
 iii. Define a unit charge.
 iv. Two parallel plates have a potential 

difference of 10V between them. If the 
plates are 0.5 mm apart, what will be the 
strength of electric charge.

 v. What is uniform electric field?
 vi. If two lines of force intersect of one  

point. What does it mean?
 vii. State the units of linear charge density.
 viii. What is the unit of dipole moment?
 ix. What is relative permittivity?

3. Solve numerical examples.
 i.  Two small spheres 18 cm apart have 

equal negative charges and repel each 
other with the force of 6×10-3 N. Find the 
total charge on both spheres.

     [Ans: q = 2.938×10-7 C]
 ii.  A charge +q exerts a force of magnitude 

-0.2 N on another charge -2q. If they 
are separated by 25.0 cm, determine the 
value of q. 

            [Ans: q = 0.8333 µC]

 
 iii.  Four charges of + 6×10-8 C each are 

placed at the corners of a square whose 
sides a are 3 cm each. Calculate the 
resultant force on each charge and show 
its direction on a digram drawn to scale. 

              [Ans:  6.89×10-2 N]
 iv.  The electric field in a region is given by

E
��

 = 5.0 kN/C. Calculate the electric flux 
Through a square of side 10.0 cm in the 
following cases 

  (a) the square is along the XY plane    
         [Ans: = 5.0×10-2 Vm]

  (b) The square is along XZ plane    
                         [Ans: Zero]

  (c) The normal to the square makes an 
                 angle of 450 with the Z axis.
              [Ans: 3.5×10-2 Vm]
 v.  Three equal charges of 10×10-8 C 

respectively, each located at the corners 
of a right triangle whose sides are 15 cm, 
20 cm and 25 cm respectively. Find the 
force exerted on the charge located at the 
90° angle. 

              [Ans:  4.59.×10-3 N]
 vi. A potential difference of 5000 volt is 

applied between two parallel plates 5 cm  
a part  a small oil drop having a charge of 
9.6 ×10-19 C falls between the plates. Find 
(a) electric field intensity between the 
plates and (b) the force on the oil drop.

          [Ans: (a) 1.0.×105 N/C
                    (b) 9.6.×10-14 N]
 vii.  Calculate the electric field due to a charge 

of -8.0×10-8 C at a distance of 5.0 cm 
from it.  

          [Ans:  -2.88×10-2 N/C]

***
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11.1 Introduction: 

The valence electrons become de-localized 
when a large number of atoms come together 
in a metal. These are the conduction electrons 
or free electrons constituting an electric current 
when a potential difference is applied across the 
conductor.

11.2 Electric current :

Consider an imaginary gas of both 
negatively and positively charged particles. 
Fig. 11.1 shows the negatively and positively 
charged particles flowing randomly in various 
directions across a plane P. In a time interval 
t, let the amount of positive charge flowing in 
the forward direction be q+ and the amount of 
negative charge flowing in the forward direction 
be q-.

Fig. 11.1: Flow of charged particles. 

Thus the net charge flowing in the forward 
direction is q = q+- q-. For a steady flow, this 
quantity is proportional to the time t. The ratio 
q

t
 is defined as the current I.

  I = 
q

t
   --- (11.1)

SI unit of the current is ampere (A), that of the 
charge and time is coulomb (C) and second (s) 
respectivly.

Let I be the current varying with time. Let 
∆q be the amount of net charge flowing across 

 1. Do you recall that the flow of charged particles in a conductor constitutes a current? 
 2.  An electric current in a metallic conductor such as a wire is due to flow of electrons, the 

negatively charged particles in the wire. 
 3. What is the role of the valence electrons which are the outermost electrons of an atom? 

Electric Current Through Conductors

Can you recall?

11.

the plane P from time t to t + ∆t, i.e. during the 
time interval ∆t. Then the current is given by

 I (l) = lim
�

�
�t o

q

t�
   --- (11.2)

Here, the current is expressed as the limit 
of the ratio ∆q/ ∆t as ∆t tends to zero.

The current during lightening could be 
as high as 10,000 A, while the current in the 
house hold circuit could be of the order of a few 
amperes. Currents of the order of a  milliampere 
(mA), a microampere (µA) or a nanoampere 
(nA) are common in semiconductor devices. 

11.3 Flow of current through a conductor :

A current can be generated by positively 
or negatively charged particles. In an 
electrolyte, both positively and negatively 
charged particles take part in the conduction. 
In a metal, the free electrons are responsible 
for conduction. These  electrons flow and 
generate a net current under the action of an 
applied electric field. As long as a steady 
field exists, the electrons continue to flow 
in the form of a steady current. Such steady 
electric fields are generated by cells and 
batteries.

Sign convention : The direction of the 
current in a circuit is drawn in the direction 
in which positively charged particles would 
move, even if the current is constituted by 
the negatively charged particles, electrons, 
which move in the direction opposite to that 
the electric field. We use this as a convention.

Do you know ?

11.4 Drift speed : 

Imagine a copper rod with no current 
flowing through it. Fig 11.2 shows the 
schematic of a conductor with the free electrons 
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in random motion. There is no net motion of 
these electrons in any direction. If electric field 
is applied along the length of the copper rod, 
and a current is set up in the rod, these electrons 
still move randomly, but tend to 'drift' in a 
particular direction. Their direction is opposite 
to that of the applied electric field.

Direction of electric field : Direction of an 
electric field at a point is the direction of the 
force on the test charge placed at that point.

The electrons under the action of the 
applied electric field drift with a drift speed V

d
. 

The drift speed in a copper conductor is of the 
order of 10-4 m/s-10-5 m/s, whereas the electron 
random speed is of the order of 106 m/s.

Fig. 11.2: Free electrons in random motion 
inside the conductor.

How is the current through a conductor 
related to the drift speed of electrons? Figure 
11.3 shows a part of conducting wire with its 
free electrons having the drift speed V

d
 in the 

direction opposite to the electric field E
��

. 

Fig. 11.3: Conducting wire with the applied 
electric field.

It is assumed that all the electron move with 
the same drift speed V

d
 and that, the current I is 

the same throughout the cross section (A) of the 
wire. Consider the length L of the wire. Let n be 
the number of free electrons per unit volume of 
the wire. Then the total number of electrons in 
the length L of the conducting wire is nAL. The 
total charge in the length L is,
 q = n A L e   --- (11.3)
where e is the electron charge.

This is total charge that moves through 
any cross section of the wire in a certain time 
interval t,

 t = 
L

Vd

      
     

--- (11.4)

From the Eq. (11.1), and Eq. (11.3), the current

 I = 
q

t
 = 

n A L e

L / V
= n AV  e

d
d

 --- (11.5)
Hence 

 V =
I

nAe
=

J

ned
  --- (11.6)

where J = I/A is current density. J is uniform 
over the cross sectional area A of the wire. Its 
unit is A/m2 

Here, J = 
I

A
    --- (11.7)

From Eq. (11.6),
 

J V d

�� ��
=(ne)    --- (11.8)

For electrons, ne is negative and J
��

 and V d

��
 

have opposite directions, V d

��
 is the drift velocity.

Example 11.1: A metallic wire of diameter 
0.02m contains 1028 free electrons per cubic 
meter. Find the drift velocity for free electrons, 
having an electric current of 100 amperes 
flowing through the wire.

(Given : charge on electron = 1.6 × 10-19C) 

Solution: Given

 e = 1.6 × 10-19 C

 n = 1028 electrons/m3

 D = 0.02m r = D/2 = 0.01m

 I = 100 A

 V =
J

n e
=

I

n A ed

where A is the cross sectional area of the wire.

A = πr2 = 3.142 × (0.01)2

 = 3.142 × 10-4m2

 

Vd =
100

3.142 10 10 1.6 10-4 28 -19� � �

�
� �10

5 027

2 4 9

.
 V

d
 = 10-3 × 0.1989 = 1.9 × 10-4 m/s

Example 11.2: A copper wire of radius 0.6 mm 
carries a current of 1A. Assuming the current to 
be uniformly distributed over a cross sectional 
area, find the magnitude of current density.
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Solution: Given 

  r = 0.6 mm = 0.6 ×10-3 m

 I = 1A
 J = ?
Area of copper wire = πr2

   = 3.142 × (0.6)2 × 10-6

   = 3.142 × 0.36 × 10-6

   = 1.1311 × 10-6 m2

 
J = 

I

A
�

� �

1

1 1311 10 6.
 J = 0.884 × 106 A/m2

11.5 Ohm’s law :

The relationship between the current 
through a conductor and applied potential 
difference was first discovered by German 
scientist George Simon Ohm in 1828 AD. This 
relationship is known as Ohm’s law.

It states that “The current I through 
a conductor is directly proportional to the 
potential difference V applied across its two 
ends provided the physical state of the conductor 
is unchanged”.

The graph of current versus potential 
difference across the conductor is a straight line 
as shown in Fig. 11.4

Fig. 11.4: I-V curve for a conductor.
In general, I ∝ V     

or V= I R     or  R =
V

I ,  --- (11.9)

where R is a proportionality constant and is 
called the resistance of the conductor. The unit 
of resistance is ohm (Ω),

 
1  = 

1volt

1ampere
Ω

If potential difference of 1volt across 
a conductor produces a current of 1ampere 
through it, then the resistance of the conductor 
is 1Ω.

Reciprocal of resistance is called 
conductance.

 
C =

1

R    
--- (11.10)

The unit of conductance is siemens or (Ω)-1

Example 11.3: A Flashlight uses two 1.5V 
batteries to provide a steady current of 0.5A in 
the filament. Determine the resistance of the 
glowing filament.

Solution:

 
R =

V

I
� �

3

0 5
6 0

.
. �

∴ Resistance of the glowing filament is 6.0 Ω.
Physical origin of Ohm’s law :

We know that electrical conduction in a 
conductor is due to mobile charge carriers, the 
electrons. It is assumed that these conduction 
electrons are free to move inside the volume 
of the conductor. During their random motion, 
electrons collide with the ion cores within the 
conductor. It is assumed that electrons do not 
collide with each other. These random motions 
average to zero. On the application of an 
electric field E

��
, the motion of the electrons is a 

combination of the random motion of electrons 
due to collisions and that due to the electric field 
E
��

. The electrons drift under the action of the 
field E

��
 and move in a direction opposite to the 

direction of the field E
��

.

Consider an electron of mass m subjected 
to an electric field E

��
. The force experienced by 

the electron will be F
��

 = e E
��

. The acceleration 
experienced  by the electron will then be

 
a

E� ��
=

e

m          
--- (11.11)

The type of collision the conduction 
electrons undergo is such that the drift velocity 
attained before the collision has nothing to do 
with the drift velocity after the collision. After 
the collision, the electron will move in random 
direction, but will still drift in the direction 
opposite to E

��
.

Let τ be the average time between two 
successive collisions. Thus on an average, the 

Ideal Ohm's law
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electrons will acquire a drift speed Vd = aτ , 
where a is the acceleration given by Eq (11.11). 
Also, at any given instant of time, the average 
drift speed of the electron will also be Vd = aτ . 
From Eq. (11.11),

 
V = a

eE

md �
�

�
             

--- (11.12)

From the Eq. (11.6) and Eq. (11.12),   

 V = 
J

ne
=

eE

md

τ
             --- (11.13)

which gives  

 
E =

m

e n
J

2 �
�
�
�

�
�
�

             
--- (11.14)

or, E = ρJ, where ρ is the resistivity of the 
material and     

 
�

�
�

m

ne2
            

 --- (11.15)

For a given material, m, n, e2 and τ will 
be constant and ρ will also be constant, ρ 
is  independent of E

��
, the externally applied 

electric field.

11.6 Limitations of the Ohm’s law:

Ohm’s law is obeyed by various materials 
and devices. The devices for which potential 
difference (V) versus current (I) curve is a 
straight line passing through origin, inclined 
to V-axis, are called linear devices or ohmic 
devices (Fig. 11.4). Resistance of these devices 
is constant. Several conductors obey the Ohms 
law. They follow the linear I-V characteristic. 

 

Fig. 11.5: I-V curve for non-Ohmic 
devices. 

The devices for which the I-V curve is not 
a straight line as shown in Fig. 11.5 are called  
non-ohmic devices. They do not obey  the 
Ohm’s law and the resistance of these devices 
is a function of V or I; e.g. liquid electrolytes, 

vacuum tubes, junction diodes, thermistors etc. 
Resistance R for such non-linear devices at a 
particular value of the potential difference V is 
given by,

 
R

V

I
=

dV

dI
 = 

I
lim
�

�
��0             

--- (11.16)

where  ∆V is the potential difference between 
the two values of potential  

 
V

V
V

V
�
� �
2 2

    to    + , 
 

and ∆I is the corresponding change in the 
current.

11.7 Electrical Energy and Power:

Consider a resistor AB connected to a 
cell in a circuit shown in Fig. 11.6 with current 
flowing from A to B. The cell maintains a 
potential difference V between the two terminals 
of the resistor, higher potential at A and lower 
at B. Let Q be the charge flowing in time ∆t 
through the resistor from A to B. The potential 
difference V between the two points A and B, is 
equal to the amount of work W, done to carry a 
unit positive charge from A to B. It is given by

V = 
W
Q

,       W = VQ              --- (11.17)

 

Fig. 11.6: A simple circuit with a cell and a 
resistor.

The cell provides this energy through the 
charge Q, to the resistor AB where the work is 
performed. When the charge Q  flows from the 
higher potential point A to the lower potential 
point B, i.e. through a decrease in potential of 
value V, its potential energy decreases by an 
amount 

 ∆U = QV = I ∆tV             --- (11.18)

where I is current due to the charge Q flowing 
in time ∆t. Where will this energy go? By 
the principle of conservation of energy, it is 
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converted into some other form of energy.

In the limit as ∆t  0,

 
dU 
dt  = I.V              --- (11.19)

 

Here, 
dU 
dt  is power, the time rate of transfer of 

energy and is given by, 

 P = 
dU 
dt  = I.V             --- (11.20)

We can also say that this power is 
transferred by the cell to the resistor or any 
other device in place of the resistor, such as a 
motor, a rechargeable battery etc.

Because of the presence of an electric 
field, the free electrons move across a resistor 
and there would be an increase in their kinetic 
energy as they move. When the electrons collide 
with the ion cores the energy gained by them 
is shared among the ion cores. Consequently, 
vibrations of the ions increase, resulting in 
heating up of the resistor. Thus, some amount 
of energy is dissipated in the form of heat in a 
resistor. The energy dissipated in time interval 
∆t is given by Eq. (11.18). The energy dissipated 
per unit time is actually the power dissipated 
and is given by Eq. (11.20).

Using Eq. (11.20), and using Ohm’s law, V=IR,

 
∴P = 

V

R
= I R

2
2

         
--- (11.21)

 
It is the power dissipation across a resistor 

which is responsible for heating it up. For 
example, the filament of an electric bulb heats 
up to incandescence, radiating out heat and 
light.

Example 11.4 : An electric heater takes 6A 
current from a 230V supply line, calculate 
the power of the heater and electric energy 
consumed by it in 5 hours.

Solution : Given 
 I = 6A, V = 230V
We know that,
P = I × V = (6A) (230V) = 1380 W
   P = 1.38 kW
Energy consumed = Power × time 
   = (1.38 kW) × (5 h)
   = 6.90kWh (1.0 Kwh = 1 unit of power)
   = 6.9 units of electrical energy.

11.8 Resistors:

 Resistors are used to limit the current 
following through a particular path of a circuit. 
Commercially available resistors are mainly of 
two types :
 Carbon resistors and Wire wound 
resistors. High value resistors are mostly carbon 
resistors. They are small and inexpensive. The 
values of these resistors are colour coded to 
mark their values in ohms. The colour coding 
is standardized by Electronic Industries 
Association (EIA). One such resistor is shown 
in Fig. 11.7.

 
Fig. 11.7: Carbon composition resistor.  

Colour code: 

Colours 1st 

digit

2nd 

digit

Multiplier Tolerance

Black 0 0 ×100

Brown 1 1 ×101 ±1%

Red 2 2 ×102 ±2%

Orange 3 3 ×103

Yellow 4 4 ×104

Green 5 5 ×105

Blue 6 6 ×106

Violet 7 7 ×107

Gray 8 8 ×108

White 9 9 ×109

For Gold ×10-1 ±5%

For Silver × 10-2 ±10%

No colour - ±20%

Easy Bytes:

Finding it difficult to memorize the colour 
code sequence? No need to worry, we have a 
one liner which will help you out “B. B. Roy in 
Great Britain has Very Good Wife”

  B     B     R     O     Y     G     B     V     G    W

This funny one liner makes it easy to recall 
the sequence of digits and multipliers.



212

In the four band resistor colour code 
illustrated in the above table, the first three 
bands (closest together) indicate the value in 
ohms. The first two bands indicate two numbers 
and third band often called decimal multiplier. 
The fourth band separated by a space from the 
three value bands, (so that you know which end 
to start reading from), indicates tolerance of the 
resistor.

Example  

i. Colour code of resistor is 

   Yellow    Violet  Orange     Gold

Value  :   4           7         103 ±5%

i.e. 47×103 = 47000Ω = 47kΩ ±5%
The value of the resistor is 47kΩ    ±5%
ii. From given values of resistor; find the colour 
bands of this resistor
 330Ω = 33×10
 3 3 101

    Orange   Orange   Brown   tolerance band
11.8.1 Rheostat:

A rheostat shown in Fig. 11.8 is an 
adjustable resistor used in applications that 
require adjustment of current or resistance in 
an electric circuit. The rheostat can be used to  
adjust potential difference between two points 
in a circuit, change the intensity of lights and 
control the speed of motors, etc. Its resistive 
element can be a metal wire or a ribbon, carbon 
films or a conducting liquid, depending upon 
the application. In hi-fi equipment, rheostats are 
used for volume control.

 

Fig . 11.8: Rheostat.

11.8.2 Combination of Resistors:

I. Series combination of Resistors:

In series combination of resistors, these are 
connected in single electrical path as shown in 
Fig 11.9. Hence the same electric current flows 
through each resistor in a series combination. 

Because of series combination, the supply 
voltage between two resistors R

1
 and R

2
 is V

1 

and V
2
, respectively and the same current I 

flows through the resistor R
1
 and the resistor 

R
2
. i.e. in series combination, supply voltage is 

divided and the current remains the same in all 
the resistors. 

Fig. 11.9: Series  combination of two 
resistors R

1
 and R

2
. 

According to Ohm’s law,

 
R =

V

I
  ,    R =

V

I1
1

2
2

            
--- (11.22)

Total voltage V=V
1
+V

2                     
--- (11.23)

From equation .... (11.22) and (11.23)

we write

 V = I(R
1
+R

2
)

                     
--- (11.24) 

        ∴V = I R
s
             --- (11.25)

Thus the equivalent resistance of the series 
circuit R

s
 = R

1
+R

2

When a number of resistors are connected 
in series, the equivalent resistance is equal to 
the sum of individual resistances.

For n number of resistors,

R
s
 = R

1
+ R

2 
+ R

2
+...........+R

n
= Ri

i=

i=n

1
∑   -- (11.26)

II. Parallel Combination of Resistors:

In the parallel combination, the resistors 
are connected in such a way that the same 
voltage is applied across each resistor.

A number of resistors are said to be 
connected in parallel if all of them are connected 
between the same two electrical points each 
having individual path as shown in Fig. 11.10.

In parallel combination the total current I 
is divided into I

1
 and I

2
 as shown in the circuit 
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diagram Fig.11.10, whereas voltage V across 
them remains the same,

Fig. 11.10 : Two resistors in parallel 
combination.

 I = I
1
+ I

2                                                   
-- (11.27) 

where I
1
 is current flowing through R

1 
and

 
I

2
 is 

current flowing through R
2
.

When Ohm’s law is applied to R
1

 
V = I

1
R

1 
      i.e. I =

V

R1
1

       --- (11.28a)

Ohm’s law applied to R
2

 V =I
2
R

2            
i.e. I =

V

R2
2

    --- (11.28b) 

From Eq. (11.27) and Eq. (11.28),  

∴ I =
V

R
+

V

R1 2

  ,

 If, 
  I =

V

Rp

  ,

 

V

R
=

V

R
+

V

Rp 1 2

  ,

∴ 
1

R
=

1

R
+

1

Rp 1 2

 ,         --- (11.29)

where R
p
 is the equivalent resistance in parallel 

combination.

If n resistors R
1
, R

2
, R

3
........., R

n
 are 

connected in parallel, the equivalent resistance 
of the combination is given by 

1

R
=

1

R
+

1

R
+

1

R
+............

1

R
=

1

Rp 1 2 3 n i=1

n

∑ --(11.30)

Thus when a number of resistors are 
connected in parallel, the reciprocal of the 
equivalent resistance is equal to the sum of the 
reciprocals of individual resistances.

Example 11.5: Calculate i) total resistance and 
ii) total current in the following circuit.

     R
1 
= 3Ω, R

2 
= 6Ω, R

3 
= 5Ω, V = 14V

 

 Circuit diagram

Solution: 

i) Total resistance = R
T
 = R

P
+R

3

 
R = 

R R

R +RP
1 2

1 2

�
�

�
3 6

9
2�

 R
T
= 2 + 5 = 7Ω

 Total Resistance = 7Ω
ii) Total current :

 
I = 

V

RT

�
14

7

V

�
 I = 2A
11.9 Specific Resistance (Resistivity):

At a particular temperature, the resistance 
of a given conductor is observed to depend on 
the nature of material of conductor, the area of 
its cross-section, and its length.

It is found that resistance R of a conductor 
of uniform cross section is
 i. directly proportional to its length l, 
 i.e. R∝ l
 ii. inversely proportional to its area of 
cross section A, 

 i.e. R∝ 
l
A  

From i and ii

 R =
l

A
ρ              --- (11.31)

where ρ is a constant of proportionality and 
it is called specific resistance or resistivity 
of the material of the conductor at a given 
temperature.
From Eq. (11.31), we write

 � �
RA

l                     --- (11.32) 
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SI unit of resistivity is ohm-meter. 
Resistivity of a conductor is numerically the 
resistance per unit length, and per unit area of 
cross-section of material of the conductor.

i.e. when, R = 1Ω, A =1m2 and l = 1m, 

      then, ρ =1Ωm

Conductivity : Reciprocal of resistivity is 
called conductivity of a material, σ = (ρ)-1.

SI unit of σ is: (Ωm)-1  i.e. siemens/meter (Sm-1)

Table 11.1 : Resistivity of various materials

Material Resistivity ρ
(Ω.m)

Material Resistivity ρ
(Ω.m)

Conductors
Silver
Copper
Gold
Aluminium
Tungsten
Iron
Mercury
Nichrome (alloy)

1.59 × 10-8

1.72 × 10-8

2.44 × 10-8

2.82 × 10-8

5.6 × 10-8

9.7 × 10-8

95.8 × 10-8

100 × 10-8

Semiconductors
Carbon
Germanium
Silicon

Insulators
Glass
Mica
Rubber (hard)
Teflon
Wood (maple)

3.5 × 10-5

0.5
3 × 104

1011-1013

1011-1015

1013-1016

1016

3 × 108

Example 11.6: Calculate the resistance per 
metre, at room temperature, of a constantan 
(alloy) wire of diameter 1.25mm. The resistivity 
of constantan at room temperature is 5.0 × 10-7 

Ωm.
Solution: ρ = 5.0 × 10-7 Ωm
     d = 1.25 × 10-3 m
     r = .625 × 10-3 m   
Cross-sectional Area = πr2

 Resistivity � �
RA

l
    

 

Resistance per meter = 

i.e.         

R

R

l A

l

� �
�

�

�� 5 10

0 625 1

7

( . 00 3 142

0 41

3 2

1

�

�

�

�

) .

.              
R

l
�m

∴ Resistance per metre= 0.41 Ωm-1

Resistivity ρ is a property of a material, 
while the resistance R refers to a particular 

object. Similarly, the electric field E
��

  at a point 
is specified in a material with the potential 
difference across the resistance, and the current 
density J

��
 in a material instead of the current I 

in the resistor. Then for an isotropic material, 

 
� �� �

E

J
 E J    or    

�� ��
      

---- (11.33)

Again, the SI unit of ρ is
unit( )

unit( )
=

V/m

A/m
=

V

A
m= .m

2

E

J
Ω

In terms of conductivity σ of a material, from 
(11.33),

  
J E E
�� �� ��
� �

1

�
�

    
--- (11.34)

For a particular resistor, we had (Eq. 11.9) 
the resistance R given by

 
R =

V

I

Compare this with the above Eq (11.33).

11.10  Variation of Resistance with 
Temperature:

Resistivity of a material varies with 
temperature. It is a property of material. Fig. 
11.11 shows the variation of resistivity of 
copper as a function of temperature (K). It can 
be seen that the variation is linear over a certain 
range of temperatures. Such a linear relation 
can be expressed as, 

 ρ = ρ0[1+ α(T - T
0
)],          --- (11.35)

where T
0
 is the chosen reference temperature and 

ρ0 in the resistivity at the chosen temperature, 
for example, T

o
 can be 0 oC.
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 R
T 
= 2.5 × 1.32

 RT  = 3.3Ω

Fig. 11.11: Resistivity as a function of 
temperature (K). 

 In the above Eq. (11.35),

 �
� �

�
�

�
�0

0 ( )T -T

R - R

R (T -T )0

0

0 0
  --- (11.36)

Here, α is called the temperature coefficient 
of resistivity. Table (11.1) shows the resistivity of 
some of the metals. The temperature coefficient 
of resistance is defined as the increase in 
resistance per unit original resistance at the 
chosen reference temperature, per degree rise in 
temperature. The unit of α is oC-1 or oK-1 (per 
degree celcius or per degree kelvin).
 From Eq. (11.36)
 R = R

0
 [1+ α (T - T

0
)]        --- (11.37)

For small difference in temperatures,

 � � �
1

R

dR

dT0

          --- (11.38)

Here, the temperature difference is more 
important than the temperature alone. 
Therefore, as the sizes of degrees on the 
Celsius scale and the Absolute scale are 
identical, any scale can be used.

Do you know ?

Superconductivity :
 We know that the resistivity of a 
metal decreases as the temperature decreases. 
In case of some metals and metal alloys, 
the resistivity suddenly drops to zero at a 
particular temperature (T

c
). This temperature 

is called critical temperature, for example, 
mercury loses its resistance completely to 
zero at 4.2K.
Superconductivity can be harnessed so as to 
be useful for mankind. It is already in use in 
obtaining very high magnetic field (a few 
Tesla) in superconducting magnet. These 
magnets are used in research quality NMR 
spectrometers. For its operation, the current 
carrying coils are required to be kept at a 
temperature less than the critical temperature 
of the coil material. 

11.11 Electromotive Force (emf): 

When charges flow through a conductor, 
a potential difference has to be established 
between the two ends of the conductor. For a 
steady flow of charges, this potential difference 
is required to be maintained across the two ends 
of the conductor, the terminals. There is a device 
that does so by doing work on the charges, 
thereby maintaining the potential difference. 
Such a device is called an emf device and it 
provides the emf ε. The charges move in the 
conductor owing to the energy provided by the 
emf device. The device supplies this energy 
through the work it does. 

You must have used some of these emf 
devices. Power cells, batteries,Solar cells, fuel 
cells, and even generators, are some examples 
of emf devices familiar to you.

 
Fig. 11.12: Circuit with emf device.

Example 11.7: A piece of platinum wire has 
resistance of 2.5 Ω at 0o C. If its temperature 
coefficient of resistance is 4 ×10-3/oC. Find the 
resistance of the wire at 80o C.

Solution:

 R
0
= 2.5 Ω

 α = 0.004/oC

 T - 0 = T = 80o C

 R
T 
= R

0
(1+ αT )

 R
T
 = 2.5 (1+ 0.004 × 80) = 2.5 (1 + 0.32)
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Fig. 11.12 shows a circuit with an emf 
device and a resistor R. Here, the emf device 
keeps the positive terminal (+) at a higher 
electric potential than the negative terminal (-). 

The emf is represented by an arrow from 
the negative terminal to the positive terminal of 
a device such as a Voltaic cell. When the circuit 
is open, there is no net flow of charge carriers 
within the device. When connected in a circuit, 
there is a flow of carriers from one terminal 
to the other terminal inside the emf device. 
The positive charge carriers move towards the 
positive terminal which acts as cathode inside 
the emf device. Thus the positive charge carriers 
move from the region of lower potential energy, 
to the region of higher potential energy which is 
cathode inside the emf device. Here, the energy 
source is chemical in nature. In a Solar cell, it is 
the photon energy in the Solar radiation.

Now suppose that a charge dq flows 
through the cross section of the circuit (Fig. 
11.12), in time dt.

It is clear that the same amount of charge 
dq flows throughout the circuit, including the 
emf device. It enters the negative terminal (low 
potential terminal) and leaves the positive 
terminal (higher potential terminal). Hence, 
the device must do work dw on the charge dq, 
so that it moves in the above manner. Thus we 
define the emf of the emf device.

  
ε  =

dw

dq  
          --- (11.39)

 The SI unit of emf is joule/coulomb 
(J/C).

In an ideal device, there is no internal 
resistance to the motion of charge carriers. The 
emf of the device is then equal to the potential 
difference across the two terminals of the 
device. In a real emf device, there is an internal 
resistance to the motion of charge carriers. 
If such a device is not connected in a circuit, 
there is no current through it. In that case the 
emf is equal to the potential difference across 
the two terminals of the emf device connected 
in a circuit, there is no current through it. If a 
current (I) flows through an emf device, there is 
an internal resistance (r) and the emf (ε) differs 

from the potential difference across its two 
terminals (V).

 V= ε - (I) (r)             --- (11.40)
The negative sign is due to the fact that the 

current I flows through the emf device from the 
negative terminal to the positive terminal.

By the application of Ohm’s law Eq. (11.9),
 V = IR   
 Hence IR = ε - Ir           --- (11.41)
Or 

 
I 

R + r
=  

ε
  

          --- (11.42)

Thus, the maximum current that can be 
drawn from the emf device is when R = 0, i.e.

 
I

rmax = 
ε

  
           --- (11.43)

This is the maximum allowed current 
from an emf device (or a cell). This decides the 
maximum current rating of a cell or a battery.

11.12 Cells in Series: 

In a series combination, cells are connected 
in single electrical path, such that the positive 
terminal of one cell is connected to the negative 
terminal of the next cell, and so on. The terminal 
voltage of battery/cell is equal to the sum of 
voltages of individual cells in series, as shown 
in Fig 11.13 a.

Figure shows two 1.5V cells in series. This  
combination provides total voltage of 3.0V 
(1.5×2).

   
Fig. 11.13 (a): Cells in parallel.

      
Fig. 11.13 (b): Cells in parallel. 
The equivalent emf of n number of cells 

in series combination is the algebraic sum of 
their individual emf. The equivalent internal 
resistance of n cells in a series combination is 
the sum of their individual internal resistance.
 V r

i
i

i
i = � � �� I .            --- (11.44)
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• Advantages of cells in series.
 (i) The cells connected in series produce a 

larger resultant voltage.
 (ii) Cells which are damaged can be easily 

identified, hence can be easily replaced.
11.13 Cells in parallel:

Consider two cells which are connected 
in parallel. Here, positive terminals of all the 
cells are connected together and the negative 
terminals of all the cells are connected together. 
In parallel connection, the current is divided 
among the branches i.e. I

1
 and I

2
 as shown in 

Fig. 11.13b. Consider points B
1
 and B

2
 having 

potentials V
B

1
 and V

B
2

 
, respectively.

For the first cell the potential difference 
across its terminals is, 

V = V
B

1
 - V

B
2
 = ε1 - I1r1             --- (11.45) 

       
�    I =

-V

r1
1

1

�
   

         --- (11.46)

Point B
1
 and B

2
 are connected exactly similarly 

to the second cell.
Hence, considering the second cell we write, 

V = V
B

1
 - V

B
2
 = ε2 - I2r2  ; 

I
V

r2
2

2

�
��

    
--- (11.47)

We know that  I = I
1
+ I

2

Combining the last three equations,

� � � �

� �
�

�
�

�

�
� �

       =

          

1

1 1

1

1

I
r

V

r

V

r

r r r

� �

� �

r

V

2

2 2

2

2 1

1
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�

�
�

�

�
�

�
�

�
�

�

�
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�

�
�

�

�
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�

1

Thus,  
1

      

1

1

1

r

V
r r r r

I

V

2

2

2

2

1 � �

rr r

r r

r r

r r
I1

1

1 1

1

+ 2

2

2 2

2

�
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�

�
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�
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--- (11.48)

 

 

V
r r

r +r
I

r r

r +r
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1

1

1
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2

2

2

�
�

 
---(11.49)

If we replace the cells by a single cell 
connected between points B

1
 and B

2
 with the 

emf ε
eq 

and the internal resistance r
eq

 as in Fig. 
(11.13b), 

then,

 V =  ε
eq 

- Ir
eq                                          

--- (11.50)

Considering Eq. (11.49) and Eq. (11.50) we can 
write, 

 

       =
+

        
+

i.e.  
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For n number of cells connected in parallel with 
emf ε

1
, ε2

, ε3
,
  ......, εn

 and internal resistance r
1
, 

r
2
, r3

,
  ......, rn

 

 
1 1 1 1 1

2 3r r r r req 1

� � � � �...........
n

--- (11.52)

and  
� � � �eq

eq

1

1r r r r
n

n

� � � �2

2

.............

              --- (11.53)

Substitution of emfs should be done 
algebraically by considering proper ± signs 
according to polarity.

• Advantages of cells in parallel : For cells 
connected in parallel in a circuit, the circuit 
will not break open even if a cell gets 
damaged or open.

• Disadvantages of cells in parallel : The 
voltage developed by the cells in parallel 
connection cannot be increased by 
increasing number of cells present in circuit.

11.14 Types of Cells:

Electrical cells can be divided into several 
categories like primary cell, secondary cell, 
fuel cell, etc.

A primary cell cannot be charged again. It 
can be used only once. Dry cells, alkaline cells 
are different examples of primary cells. Primary 
cells are low cost and can be used easily. 
But these are not suitable for heavy loads. 
Secondary cells are used for such applications. 
The secondary cell are rechargeable and can be 
reused. The chemical reaction in a secondary 
cells is reversible. Lead acid cell, and fuel cell 
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are some examples of secondary cells. Lead 
acid battery is used widely in vehicles and other 
applications which require high load currents. 
Solar cells are secondary cells that convert 
Solar energy into electrical energy. 

Fuel cells vehicles (FCVs) are electric 
vehicles that use fuel cells instead of lead acid 
batteries to power the vehicles. Hydrogen is 
used as a fuel in fuel cells. The by- product 
after its burning is water. This is important 
in terms of reducing emission of greenhouse 
gases produced by traditional gasoline fueled 
vehicles. The hydrogen fuel cell vehicles are 
thus more environment friendly.        
Example 11.8: A network of resistors is 
connected to a 15 V battery with internal 
resistance 1 Ω as shown in the circuit 
diagram. 

Calculate 
(i)  The equivalent resistance,
(ii)  Current in each resistor,
(iii) Voltage drops V

AB
, V

BC
 and V

DC
.

Solution :
i) Equivalent Resistance (R

eq
) =R

AB
+R

BC
+R

DC

 R RAB CD=
4×4

4+4
,       =

6×6

6+6
� �2 3� �

 R
BC 

= 1Ω
 R

T
= R

eq
 = 2 + 1 + 3 = 6 Ω

 ∴ Equivalent Resistance is 6 Ω

ii. Current in each resistor :

 Total current I in the circuit is, 

  
I =

R +r
=

15

6 +1
= 2.1

T

ε
A

 Consider resistors between A and B.

Let I
1
 be the current through one of the 

4Ω resistors and I
2
 be the current in the other 

resistor
I

1 
× 4 = I

2 
× 4

that is,  I
1
 = I

2 
from symmetry of the two arms. 

 But I
1
 + I

2 
= I = 2.1A

 ∴   I
1
 = I

2
 =1.05A

that is, the current in each 4Ω resistor is 1.05A, 
the current in 1Ω resistor between B and C 
would be 2.1A.

Now, consider the resistances between C 
and D

Let I
3
 be the current through one of the 6 

Ω resistors and I
4
 be the current in the other 

resistor. 
  I

3 
× 6 = I

4 
× 6

 ∴  I
3 
= I

4 
= 1.05A

That is, current in each 6 Ω resistor is 1.05A

iii. Voltage drop across BC is V
BC

  V
BC

 = I × 1 = 2.1 × 2.1 = 2 V

 Voltage drop across CD is V
CD

  V
CD

 = I × R
CD

 = 2.1 × 3 =6.3V

[Note : Total voltage drop across AD is  
(4.2 V+2.1V+6.3 V) =12.6 V, while its emf is 
15 V. The loss of the voltage is 2.4 V].

https:/ /www.britannica.com/science/
superconductivityphysics

Internet my friend

1 Ω D

15 V

r =1 Ω
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1. Choose correct alternative

 i)  You are given four bulbs of 25 W, 40 W, 
60 W and 100 W of power, all operating 
at 230 V. Which of them has the lowest 
resistance?

  (A) 25 W  (C) 40 W  

  (C) 60 W  (D) 100 W

 ii)  Which of the following is an ohmic 
conductor?

  (A) transistor  (B)vacuum tube  

  (C) electrolyte (D) nichrome wire

 iii)  A rheostat is used

  (A) to bring on a known change of 
resistance in the circuit to alter the current

  (B) to continuously change the resistance 
in any arbitrary manner and there by alter 
the current

  (C) to make and break the circuit at any 
instant

  (D) neither to alter the resistance nor the 
current

 iv)  The wire of length L and resistance R is 
stretched so that its radius of cross-section 
is halved. What is its new resistance?

  (A) 5R   (B) 8R  

  (C)4R   (D) 16R

 v)  Masses of three pieces of wires made of 
the same metal are in the ratio 1:3:5 and 
their lengths are in the ratio 5:3:1. The 
ratios of their resistances are 

  (A) 1:3:5 (B) 5:3:1 

  (C) 1:15:125 (D) 125:15:1

 vi) The internal resistance of a cell of emf 
2V is 0.1Ω it is connected to a resistance 
of 0.9Ω. The voltage across the cell will 
be 

  (A) 0.5 V (B) 1.8 V 

  (C) 1.95 V (D) 3V  

 vii) 100 cells each of emf 5V and internal 
resistance 1Ω are to be arranged so as 
to produce maximum current in a 25Ω 
resistance. Each row contains equal 

number of cells. The number of rows 
should be

  (A) 2  (B) 4 

  (C) 5  (D) 100

 viii) Five dry cells each of voltage 1.5 V are 
connected as shown in diagram

   

  What is the overall voltage with this 
arrangement? 

  (A) 0V  (B) 4.5V  

  (C) 6.0V  (D) 7.5V

 2. Give reasons / short answers

 i) In given circuit diagram two resistors are 
connected to a 5V supply.

  
  a] Calculate potential difference across 

the 8Ω resistor. 
  b] A third resistor is now connected 

in parallel with 6Ω resistor. Will the 
potential difference across the 8Ω resistor 
the larger, smaller or the same as before? 
Explain the reason for your answer.

 ii) Prove that the current density of a metallic 
conductor is directly proportional to the 
drift speed of electrons.

 3. Answer the following questions.

 i) Distinguish between Ohmic and non-
ohmic substances; explain with the help 
of example.

 ii)  DC current flows in a metal piece of non-
uniform cross-section. Which of these 
quantities remains constant along the 
conductor: current, current density or 
drift speed?

Exercises Exercises
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4. Solve the following problems. 

 i) What is the resistance of one of the rails of 
a railway track 20 km long at 20° C? The 
cross section area of rail is 25 cm2 and the 
rail is made of steel having resistivity at 
20° C as 6×10-8 Ω m.    
                     [Ans: 0.48 Ω]

 ii)  A battery after a long use has an emf 
24 V and an internal resistance 380 Ω. 
Calculate the maximum current drawn 
from the battery? Can this battery drive 
starting motor of car?

                      [Ans: 0.063 A]

 iii) A battery of emf 12 V and internal 
resistance 3 Ω is connected to a resistor. 
If the current in the circuit is 0.5 A,  
a] Calculate resistance of resistor. 

  b] Calculate terminal voltage of the 
battery when the circuit is closed.

     [Ans: a) 21 Ω, b) 10.5 V]

 iv) The magnitude of current density in a 
copper wire is 500 A/cm2. If the number 
of free electrons per cm3 of copper is 
8.47×1022 calculate the drift velocity of 
the electrons through the copper wire 
(charge on an e = 1.6×10-19 C) 

            [Ans: 3.69×10-4 m/s]

 v) Three resistors 10 Ω, 20 Ω and 30 Ω are 
connected in series combination.

  i] Find equivalent resistance of series 
combination. 

  ii] When this series combination is 
connected to 12V supply, by neglecting 
the value of internal resistance, obtain 
potential difference across each resistor.

                  [Ans: i) 60 Ω, ii) 2 V, 4 V, 6 V]

 vi) Two resistors 1k Ω and 2k Ω are connected 
in parallel combination.

  i] Find equivalent resistance of  parallel 
combination

  ii] When this parallel combination is 
connected to 9 V supply, by neglecting 
internal resistance calculate current 
through each resistor.

         [Ans: i) 0.66 kΩ, ii) 9 mA, 4.5 mA]

 vii) A silver wire has a resistance of 4.2 Ω 
at 27° C and resistance 5.4 Ω at 100° C. 
Determine the temperature coefficient of 
resistance.

              [Ans: 3.91×10-3/°C]

 viii) A 6m long wire has diameter 0.5 mm. Its 
resistance is 50 Ω. Find the resistivity and 
conductivity.

      [Ans: 1.636×10-6Ω/m, 6.112×105m/Ω]

 ix) Find the value of resistances for the 
following colour code.

  1. Blue Green Red Gold 

             [Ans: 6.5 kΩ ± 5%]

  2. Brown Black Red Silver

           [Ans: 1.0 kΩ ± 10%]

  3. Red Red Orange Gold

             [Ans: 2.2 kΩ ± 5%]

  4. Orange White Red Gold

             [Ans: 3.9 kΩ ± 5%]

  5. Yellow Violet Brown Silver

          [Ans: 4.70 kΩ ± 10%]

 x) Find the colour code for the following 
value of resistor having tolerance ± 10%

  a) 330Ω   b) 100Ω c) 47kΩ 
d) 160Ω e) 1kΩ 

 xi) A current 4A flows through an automobile 
headlight. How many electrons flow 
through the headlight in a time 2hrs. 

                   [Ans : 1.8 ×1023]

 xii) The heating element connected to 230V 
draws a current of 5A. Determine the 
amount of heat dissipated in 1 hour  
(J = 4.2 J/cal.).

               [Ans : 985.7 kcal]
      

     ***
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12.1 Introduction:
The history of magnetism dates back 

to earlier than 600 B.C., but it is only in the 
twentieth century that scientists began to 
understand it and developed technologies based 
on this understanding. William Gilbert (1544-
1603) was the first to systematically investigate 
the phenomenon of magnetism using scientific 
method. He also discovered that Earth is a weak 
magnet. Danish physicist Hans Oersted (1777-
1851) suggested a link between electricity and 
magnetism. James Clerk Maxwell (1831-1879) 
proved that electricity and magnetism represent 
different aspects of the same fundamental force 
field.

 In electrostatics you have learnt about the 
relationship between the electric field and force 
due to electric charges and electric dipoles. 
Analogous concepts exist in magnetism except 
that magnetic poles do not exist in isolation, 
and we always have a magnetic dipole or a 

Some commonly known facts about 
magnetism.
 (i)  Every magnet regardless of its size and 

shape has two poles called north pole 
and south pole.

 (ii) If a magnet is broken into two or more 
pieces then each piece behaves like an 
independent magnet with somewhat 
weaker magnetic field.

  Thus isolated magnetic monopoles 
do not exist. The search for magnetic 
monopoles is still going on.

(iii)  Like magnetic poles repel each other, 
whereas unlike poles attract each other.

(iv)  When a bar magnet/ magnetic needle is 
suspended freely or is pivoted, it aligns 
itself in geographically North-South 
direction.

Magnetism 12. 

quadrupole. In this  Chapter  the main focus 
will be on elementary aspects of magnetism and 
terrestrial magnetism. 
12.2 Magnetic Lines of Force and Magnetic 

Field:
You have studied properties of electric lines 

of force earlier in the Chapter on electrostatics. 
In a similar manner, magnetic lines of force 
originate from the north pole and end at the 
south pole of a bar magnet. The magnetic 
lines of force of a magnet have the following 
properties:
 i) The magnetic lines of force of a magnet 

or a solenoid form closed loops. This is in 
contrast to the case of an electric dipole, 
where the electric lines of force  originate 
from the positive charge and end on 
the negative charge, without forming a 
complete loop (see Fig. 12.4). 

 ii) The direction of the net magnetic field B


 
at a point is given by the tangent to the 
magnetic line of force at that point in the 
direction of line of force. 

 iii)  The number of lines of force crossing per 
unit area decides the magnitude of the 
magnetic field B



. 
 iv)  The magnetic lines of force do not intersect. 

This is because had they intersected, the 
direction of magnetic field would not be 
unique at that point.

 1. What is a bar magnet? 
 2.  What are the magnetic lines of force?  
 3.  What are the rules concerning the lines of 

Can you recall?

Do you know ?

You can take a bar magnet and a small 
compass needle. Place the bar magnet at a 
fixed position on a paper and place the needle 
at various positions. Noting the orientation 
of the needle, the magnetic field direction at 
various locations can be traced.

Try this

Density of lines of force i.e., the number of 
lines of force  per unit area normal to the surface 

force?  
 4.  If you freely hang a bar magnetic horizontally, 

in which direction will it become stable?
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around a particular point determines the strength 
of the magnetic field at that point. The number 
of lines of force is called magnetic flux (φ ). SI 
unit of magnetic flux (φ ) is weber (Wb). For a 
specific case of uniform magnetic field which 
is normal to the finite area A, the magnitude of 
magnetic field strength B at a point in the area  
A is given by

Magnetic Field  =

i.e.     =

magnetic flux

area

B
A

φ
      --- (12.1)

SI unit of magnetic field (B) is expressed 
as weber/m2 or Tesla.

1 Tesla = 104 Gauss.

However, magnetic lines are only a crude 
way of representing magnetic field. It is a 
pictorial representation of the strength of the 
magnetic field (B). It is better defined in terms 
of Lorentz force law which you will learn in std 
XII.

12.3 The Bar magnet: 

A bar magnet is said to have magnetic pole 
strength +q

m and - q
m at the north and south 

poles, respectively. The separation of magnetic 
poles inside the magnet is 2l. As the bar magnet 
has two poles, with equal and opposite pole 
strength, it is called a magnetic dipole. This is 
analogous to an electric dipole. The magnetic 
dipole moment, therefore, becomes m q lm

�� �
= .2   

( 2l


 is a vector from south pole  to north pole)  
in analogy with the electric dipole moment.

SI unit of pole strength (q
m
) is A m.

SI unit of magnetic dipole moment m is A m2.  

Axis:- It is the line passing through both the 
poles of a bar magnet. Obviously, there is only 
one axis for a given bar magnet.

Fig. 12.1: Bar magnet 

Equator:- A line passing through the centre 
of a magnet and perpendicular to its axis is 
called magnetic equator. The plane containing 
all equators is called the equatorial plane. The 
locus of points, on the equatorial plane, which 
are equidistant from the centre of the magnet 
is called the equatorial circle. The popularly 
known ‘equator’ in Geography is actually 
an ‘equatorial circle’. Such a circle with any 
diameter is an equator. 

Magnetic length (2l):- It is the distance 
between the two poles of a magnet.

Magnetic length (2l) =
5

6
× Geometric length

     --- (12.2)

12.3.1 Magnetic field due to a bar magnet 
at a point along its axis and at a point 
along its equator:

Fig. 12.2 (a): Magnetic field at a point 
along the axis of the magnet.

Consider a bar magnet of dipole length 2l 

and magnetic dipole moment m
��

 as shown in 
Fig. 12.2 (a). We will now find magnetic field at 
a point P along the axis of the bar magnet. 

Let r be the distance of point P from the 
centre O of the magnetic dipole.

OS = ON = l

... NP SP r l� � �� �2 2

We now use the electrostatic analogy to 
obtain the magnetic field due to a bar magnet 
at a large distance r >> l. Consider the electric 
field due to an electric dipole with a dipole 
moment p. 

B
m

r
eq

�� ��
� �

�
�
0

34

Fig. 12.2 (b): Magnetic 
field along the equatorial 
point.

Beq

��
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Table 12.1: The Electrostatic Analogue

Quantity Electrostatics Magnetism

Basic physical quantity Electrostatic charge Magnetic pole

Field Electric Field E
��

Magnetic Field B


Constant

 
1

4 0��
�
�
0

4

Dipole moment p
��

 = q ( 2l


)
along (-ve)  (+ve) charge

m
��

 = q
m
 ( 2l


) (bar magnet)
along S  N pole

Force F
��

 = q E
��

 F
��

= q
m

B


 

Energy (In external field) 
of a dipole

U = - p E
� ��
. U = -m.B

�� ��

Coulomb’s law
F

q q1 2�
�

�
�

�

�
�

1

4 0
2�� r

No analogous law as 
magnetic monopoles 
do not exist

Axial field for a short 
dipole

2

4 0
3

p

r��  
along

 
p
�� �

�
0

3

2

4

m

r

��

Equatorial field for a short 
dipole 

p

r4 0
3��  

opposite to p
��

 

��
�

0
34

m

r

��

The Electrostatic Analogue: 

As suggested by Maxwell, electricity 
and magnetism could be studied analogously. 
The pole strength (q

m
) in magnetism can be 

You have studied the electric field due to an 
electric dipole of length 2l (p = 2ql) at a distance 
r along the dipolar axis (Eq. 10.24) which is 
given by, 

 
E

p

r

��
a r l� ��

1

4 0
3��

2
      ,

 
The electric field on the equator (Eq. 10.28) 

is antiparallel to p
��

 and is given by

  
E

p

r

��
eq r l� ��

1

4 0
3��

,       

Using the analogy given in Table 12.1, 
we can thus write the axial magnetic field of a 
bar magnet at a distance r, r >> l, 2l being the 
length of bar magnet,

  
B

m

r
a

�� ��
� �

�
�
0

34

2

  
--- (12.3)

Similarly, the equatorial magnetic field

   B
m

r
eq

�� ��
� �

�
�
0

34    --- (12.4)

Negative sign shows that the direction of 

Beq

��
 is opposite to m

��
.

For the same distance from centre O of a 
bar magnet, 

B
axis

 = 2B
eq

    --- (12.5)

12.3.2 Magnetic field due to a bar magnet at 
an arbitrary point:

Fig. 12.3 Shows a bar magnet of magnetic 
moment 



m  with centre at O. P is any point 
in its magnetic field. Magnetic moment 



m  is 
resolved (about the centre of the magnet) into 
components along r  and perpendicular to 



r .�
For the component mcosθ  along r , the point P 
is an axial point.

compared with charge q in electrostatics. 
Accordingly, we can write the equivalent 
physical quantities in electrostatics and 
magnetism as shown in table 12.1.
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P

     
   Fig. 12.3: Magnetic field at an arbitrary point.

Also, for the component msinθ  
perpendicular to r , the point P is an equatorial 
point at the same distance r . Using the results 
of axial and equatorial fields, we get

 
B

m

ra
o�
�
�

�
4

2
3

cos

  
--- (12.6)

directed along mcosθ  and

 
B

m

req
o�
�
�

�
4 3

sin
�
   

--- (12.7)

directed opposite to  msinθ  
Thus, the magnitude of the resultant magnetic 
field B, at point P is given by 

      
B B Ba eq� �� 2 2

 ∴ B
m

r
o� � � � � �� � � cos sin

�

�
�

� �
4

2
3

2 2
  

              

 
� � �B

m

r
o�
�

�
4

3 1
3

2� �� cos
     

--- (12.8)

Let α  be the angle made by the direction of 


B  with 


r . Then, by using eq (12.6) and eq (12.7),

   
--- (12.9)

The angle between directions of 


B  and 


m  
is then � ��� �.     
Example 12.1: A short magnetic dipole has 
magnetic moment 0.5 A m2. Calculate its 
magnetic field at a distance of 20 cm from the 
centre of magnetic dipole on (i) the axis (ii) the 
equatorial line (Given µ

0
 = 4 π 10-7 SI units)

Solution :  

 

m ,  r

B
m

a

= 0.5 Am = 20 cm = 0.2 m

 =  

2

�
�
0

3

7

34
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�
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� � � �

�

�

� �      Wb m. /

         

B
m
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�
�
0

3
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4
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8 10
0 625 10

r

�
�
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�
�
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�
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( . )
. WWb m/ 2

12.4 Gauss' Law of Magnetism:

The Gauss' law for electric field is known 
to you. It states that the net electric flux through 
a closed Gaussian surface is proportional to the 
net electric charge enclosed by the surface (Eq. 
(10.18)). The Gauss' law for magnetic fields 
states that the net magnetic flux Φ

B 
through a 

closed Gaussian surface is zero, i.e., 

 (Gauss' law for magnetic 
fields)   

The magnetic force lines of (a) bar 
magnet, (b) current carrying finite solenoid, 
and (c) electric dipole are shown in Fig.12.4(a), 
12.4(b) and 12.4(c), respectively. The curves 
labelled (i) and (ii) are cross sections of three 
dimensional closed Gaussian surfaces.

Fig. 12.4 (a): Bar magnet. 

Fig. 12.4 (b): Current (I) carrying solenoid. 
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Fig. 12.4 (c): Electric dipole.

If we compare the number of lines of force 
entering in and leaving out of the surface (i), it 
is clearly seen that they are equal. The Gaussian 
surface does not include poles. It means that the 
flux associated with any closed surface is equal 
to zero. When we consider surface (ii), in Fig. 
12.4 (b), we are enclosing the North pole. As 
even a thin slice of a bar magnet will have North 
and South poles associated with it, the closed 
Gaussian surface will also include a South pole. 
However in Fig. 12.4(c), for an electric dipole, 
the field lines begin from positive charge and 
end on negative charge. For a closed surface 
(ii), there is a net outward flux since it does 
include a net (positive) charge. According to the 
Gauss' law of electrostatics as studied earlier, 

, where q is the positive charge 
enclosed. Thus, situation is entirely different 
from magnetic lines of force, which are shown 
in Fig. 12.4(a) and Fig. 12.4(b). Thus, Gauss' law 
of magnetism can be written as .

From the above we conclude that for 
electrostatics, an isolated electric charge exists 
but an isolated magnetic pole does not exist. In 
short, only dipoles exist in case of magnetism. 

12.5 Earth’s Magnetism:

It is common experience that a bar magnet 
or a magnetic needle suspended freely in air 
always aligns itself along geographic N-S 
direction. If it has a freedom to rotate about 
horizontal axis, it inclines with some angle with 
the horizontal in the vertical N-S plane.

This fact clearly indicates that there is 
some magnetic field present everywhere on the  
Earth . This is called Terrestrial  Magnetism. It 
is extremely useful during navigation.

Magnetic parameters of the Earth are 
described below. The magnetic lines of force 
enter the Earth's surface at the north pole and 
emerge from the south pole. 

Unless and otherwise stated, the directions 
mentioned (South, North, etc.) are always, 
Geographic.

Fig. 12.5: Earth's magnetism. 
Magnetic Axis :- The Earth is considered to 
be a huge magnet. Magnetic north pole (N) 
of the Earth is located below Antarctica while 
the south pole (S) is below north Canada. The 
straight line NS joining these two poles is called 
the magnetic axis, MM'.
Magnetic equator :- A great circle in the plane 
perpendicular to magnetic axis is magnetic 
equatorial circle, AA'. It happens to pass through 
India near Thiruvananthapuram. 
Geographic Meridian:- A plane perpendicular 
to the surface of the Earth (vertical plane) 
perpendicular to geographic axis is geographic 
meridian. (Fig.12.6)
Magnetic Meridian:- A plane perpendicular to 
surface of the Earth (Vertical plane) and passing 
through the magnetic axis is magnetic meridian. 
Direction of resultant magnetic field of the 
Earth is always along or parallel to magnetic 
meridian. (Fig.12.6)
Magnetic declination:- Angle between the 
geographic and the magnetic meridian at a 
place is called ‘magnetic declination’ (α). The 
declination is small in India. It is 0° 58′ west at 
Mumbai and 0041′ east at Delhi. Thus, at both 
these places, magnetic needle shows true North 
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accurately (Fig.12.6).

φ

Fig. 12.6: Magnetic declination.
Magnetic inclination or angle of dip (φ):- 
Angle made by the direction of resultant 
magnetic field with the horizontal at a place 
is inclination or angle of dip at the place (Fig. 
12.7).

Fig. 12.7: Magnetic inclination.
Earth’s magnetic field:- Magnetic force 
experienced per unit pole strength is magnetic 
field B



 at that place. It can be resolved in 
components along the horizontal, BH

��
 and along 

vertical,  BV

��
. The vertical component can be 

conveniently determined. The two components 
can be related with the angle of dip (φ) as,

B
H
 = B cosφ, B

V
 = B sinφ 
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--- (12.10)
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� �

� � �            --- (12.11)

Special cases

1)  At the magnetic North pole, B


 = BV

��
, 

directed upward, BH

��
 = 0 and φ = 900.

2)  At the magnetic south pole, B


 = BV

��
,- 

directed downward,  BH

��
 = 0 and φ = 2700.

3)  Anywhere on the magnetic great circle 

(magnetic equator) B = B
H
 along South to 

North, B
V
= 0 and φ = 0 

Magnetic maps of the Earth:-

Magnetic elements of the Earth (B
H
, α and 

φ) vary from place to place and also with time. 
The maps providing these values at different 
locations are called magnetic maps. These 
are extremely useful for navigation. Magnetic 
maps drawn by joining places with the same 
value of a particular element are called Iso- 
magnetic charts.

Lines joining the places of equal horizontal 
components (B

H
) are known as  ‘Isodynamic 

lines’

Lines joining the places of equal declination 
(α) are called Isogonic lines.

Lines joining the places of equal inclination 
or dip (φ) are called Aclinic lines.

Example 12.2: Earth's magnetic field at the 
equator is approximately 4×10-5 T. Calculate 
Earth's dipole moment. (Radius of Earth = 
6.4×106 m, µ

0
 = 4π×10-7 SI units)  

Solution: Given

B
eq

 = 4 ×10-5 T

r = 6.4 ×106 m

Assume that Earth is a bar magnet with N and 
S poles being the geographical South and North 
poles, respectively. The equatorial magnetic 
field due to Earth's dipole can be written as 

B
m

r

m B r

eq

eq

�

� �

� � � � �

� �

�

�
�

� �
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Example 12.3:  At a given place on the Earth, 
a bar magnet of magnetic moment 



m  is kept 
horizontal in the East-West direction. P and 
Q are the two neutral points due to magnetic 
field of this magnet and 



BH  is the horizontal 
component of the Earth's magnetic field. 
(A) Calculate the angles between position 
vectors of P and Q with the direction of 



m . 
(B) Points P and Q are 1 m from the centre of 
the bar magnet and BH T� � �3 5 10 5. � . Calculate 
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magnetic dipole moment of the bar magnet. 
Neutral point is that point where the 

resultant magnetic field is zero.
Solution: (A) As seen from the figure, the 
direction of magnetic field 



B  due to the bar 
magnet is opposite to 



BH  at the points P and Q. 

Also, � ��� �  = 90 2700 0� � � .�at P it�is� at�Qand 

    

(B) 
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1. Choose the correct option.

 i) Let r be the distance of a point on the 
axis of a bar magnet from its center. The 
magnetic field at r is always proportional 
to

  (A) 1/r2      (B) 1/r3      (C) 1/r     
(D) not necessarily 1/r3 at all points

 ii)  Magnetic meridian is the plane 

  (A) perpendicular to the magnetic axis of 

      Earth 

  (B) perpendicular to geographic axis of 

      Earth

  (C) passing through the magnetic axis of 

      Earth 

  (D) passing through the geographic axis    
Earth

 iii)  The horizontal and vertical component 
of magnetic field of Earth are same at 
some place on the surface of Earth. The 
magnetic dip angle at this place will be

  (A) 30o    (B)  45o      

  (C) 0o      (D) 90o

 iv)  Inside a bar  magnet, the magnetic field 
lines 

  (A) are not present  

  (B) are parallel to the cross sectional area 

               of the magnet

  (C) are in the direction from N pole to S 

               pole 

  (D) are in the direction from S pole to N 

               pole

Always remember:
In this Chapter we have used B as a symbol 
for magnetic field. Calling it magnetic 
induction is unreasonable. We have used 
the words magnetic field which are used in 
spoken language.

Exercises Exercises
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 v) A place where the vertical components of  
Earth's magnetic field is zero has the angle 
of dip equal to  

  (A) 0o     (B) 45o   

  (C) 60o   (D) 90o 

 vi)  A place where the horizontal component 
of Earth's magnetic field is zero lies at

  (A)  geographic equator   

  (B) geomagnetic equator  

  (C) one of the geographic poles  

  (D) one of the geomagnetic poles

 vii) A magnetic needle kept nonparallel to the 
magnetic field in a nonuniform magnetic 
field experiences

  (A) a force but not a torque  

  (B) a torque but not a force 

  (C) both a force and a torque  

  (D) neither force  nor a torque

2. Answer the following questions in brief.

 i)  What happens if a bar magnet is cut into 
two pieces transverse to its length/ along 
its length?

 ii) What could be the equation for Gauss' 
law of magnetism, if  a monopole of pole 
strength p is enclosed by a surface?

3. Answer the following questions in detail.  

 i) Explain the Gauss' law for magnetic fields.

 ii) What is a geographic meridian. How does 
the declination vary with latitude? Where 
is it minimum?

 iii) Define the Angle of Dip. What happens to 
angle of dip as we move towards magnetic 
pole from magnetic equator?

4. Solve the following Problems.

 i)  A magnetic pole of bar magnet with pole 
strength of 100 A m is 20 cm away from 
the centre of a bar magnet. Bar magnet has 
pole strength of 200 A m  and has a length 
5 cm. If the magnetic pole is on the axis 
of the bar magnet, find the force on the 
magnetic pole. 

                  [Ans: 2.5×10-2N]

 ii)  A magnet makes an angle of 45o with the 
horizontal in a plane making an angle of 
30o with the magnetic meridian.  Find the 
true value of the dip angle at the place.

               [Ans: tan-1 (0.866)]

 iii)  Two small and similar bar magnets have 
magnetic dipole moment of 1.0 Am2 
each. They are kept in a plane in such a 
way that their axes are perpendicular to 
each other. A line drawn through the axis 
of one magnet passes through the center 
of other magnet. If the distance between 
their centers is 2 m, find the magnitude of 
magnetic field at the mid point of the line 
joining their centers.

                [Ans: 5 10 7� � T ]

 iv)  A circular magnet is made with its north 
pole at the centre, separated from the 
surrounding circular south pole by an air 
a gap. Draw the magnetic field lines in the 
gap. [The magnet is hypothetical magnet].

  Draw a diagram to illustrate the magnetic 
lines of force between the south poles of 
two such magnets.

 v) Two bar magnets are placed on a straight 
line with their north poles facing each other 
on a horizontal surface. Draw magnetic 
lines around them. Mark the position of 
any neutral points (points where there is no 
resultant magnetic field) on your diagram.

***

 https://www.ngdc.noaa.gov

Internet my friend
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13.1 Introduction :
The information age in which we live 

is based almost entirely on the physics of 
electromagnetic (EM) waves. We are now 
globally connected by TV, cellphone and 
internet. All these gadgets use EM waves as 
carriers for transmission of signals. Energy 
from the Sun, an essential requirement for life 
on Earth, reaches us by means of EM waves 
that travel through nearly 150 million km of 
empty space. There are EM waves from light 
bulbs, heated engine blocks of automobiles, 
x-ray machines, lightning flashes, and some 
radioactive materials. Stars, other objects in our 
milky way galaxy and other galaxies are known 
to emit EM waves. Hence, it is important for us 
to make a careful study of the properties of EM 
waves. 

13.2 EM wave:
There are four basic laws which describe 

the behaviour of electric and magnetic fields, 
the relation between them and their generation 
by charges and currents. These laws are as 
follows.
 (1)  Gauss' law for electrostatics, which is 

essentially the Coulomb’s law, describes 
the relationship between static electric 
charges and the electric field produced by 
them.

 (2)  Gauss' law for magnetism, which is 
similar to the Gauss' law for electrostatics 
mentioned above, states that "magnetic 
monopoles which are thought to be 
magnetic charges equivalent to the electric 
charges, do not exist". Magnetic poles 
always occur in pairs.

 (3) Faraday’s law which gives the relation 
between electromotive force (emf) induced 
in a circuit when the magnetic flux linked 

Electromagnetic Waves and Communication System13. 

with the circuit changes.
 (4)  Ampere’s law gives the relation between 

the induced magnetic field associated with 
a loop and the current flowing through 
the loop. Maxwell  (1831-1879) noticed 
a major flaw in the Ampere’s law for 
time dependant fields. He noticed that the 
magnetic field can be generated not only 
by electric current but also by changing 
electric field. Therefore in the year 1861, 
he added one more term to the equation 
describing this law. This term is called 
the displacement current. This term is 
extremely important and the EM waves 
which are an outcome of these equations 
would not have been possible in absence 
of this term. 
As a result, the set of four equations 

describing the above four laws is called 
Maxwell’s equations.                  

In 1888, H. Hertz (1857-1894) succeeded 
in producing and detecting the existence of EM 
waves. He also demonstrated their properties 
namely reflection, refraction and interference.

In 1895, an Indian physicist Sir Jagdish 
Chandra Bose (1858-1937) produced EM 
waves ranging in wavelengths from 5 mm to 25 
nm.  His work, however, remained confined to 
laboratory only.

In 1896, an Italian physicist G. Marconi 
(1874-1937) became pioneer in establishing 
wireless communication. He was awarded the 
Nobel prize in physics in 1909 for his work in 
developing wireless telegraphy, telephony and 
broadcasting.

13.2.1 Sources of EM waves:
According to Maxwell’s theory, "accelerated 

charges radiate EM waves". Consider a charge 
oscillating with some frequency. This produces 

 1. What is a wave? 
 2.  What is the difference between longitudinal 

and transverse waves?
 3.  What are electric and magnetic fields and 

what are their sources?

Can you recall?

 4.  What are Lenz's law, Ampere's law and 
Faraday's law?

 5.  By which mechanism heat is lost by hot 
bodies ?  
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In 1865, Maxwell proposed that an 
oscillating electric charge radiates energy 
in the form of EM wave. EM waves are 
periodic changes in electric and magnetic 
fields, which propagate through space. 
Thus, energy can be transported in the form 
of EM waves.

Maxwell’s Equations for Charges and 
Currents in Vacuum

1)  (Gauss’ law)

Here E
��

 is the electric field and ε
0
 is 

the permittivity of vacuum. The integral is 
over a closed surface S. The law states that 
electric flux through any closed surface S is 
equal to the total electric charge Q

in
 enclosed 

by the surface divided by ε
0
. Gauss’ law 

describes the relation between an electric 
charge and electric field it produces.  

2)  (Gauss’ law for magnetism). 

Here B
��

 is the magnetic field. The 
integral is over a closed surface S. The law 
states that magnetic flux through a closed 
surface is always zero, i.e., the magnetic 
field lines are continuous closed curves, 
having neither  beginning nor end. 

an oscillating electric field in space, which 
produces an oscillating magnetic field which in 
turn is a source of oscillating electric field. Thus 
varying electric and magnetic fields regenerate 
each other.

Waves that are caused by the acceleration 
of charged particles and consist of electric 
and magnetic fields vibrating sinusoidally at 
right angles to each other and to the direction 
of propagation are called EM waves or EM 
radiation. Figure 13.1 shows an EM wave 
propagating along z-axis. The time varying 
electric field is along the x-axis and time varying  
magnetic field is along the y-axis. 

 
Fig. 13.1: EM wave propagating along z-axis.   

3)  

  (Faraday’s law with Lenz’s law)

Here φm  is the magnetic flux and the 
integral is over a closed loop. Time varying 
magnetic field induces an electromotive 
force (emf) and hence, an electric field. The 
direction of the induced emf is such that the 
change is opposed. 

4)  

    (Ampere-Maxwell law) 

Here µ0 is the permeability of vacuum 
and the integral is over a closed loop, I is 
the current flowing through the loop. φE

is the electric flux linked with the circuit. 
Magnetic field is generated by moving 
charges and also by varying electric fields. 

13.2.2 Characteristics of EM waves:
 1)  The electric and magnetic fields, E

��
 and 

B


 are always perpendicular to each other 
and also to the direction of propagation 
of the EM wave. Thus the EM waves are 
transverse waves.

 2)  The cross product E ×B
�� ��

 gives the direction 
in which the EM wave travels. E ×B

�� ��
 also 

gives the energy carried by EM wave.
 3)  The E

��
 and B

��
 fields vary sinusoidally and 

are in phase.
 4)  EM waves are produced by accelerated 

electric charges.
 5)  EM waves can travel through free space 

as well as through solids, liquids and 
gases. 

 6)  In free space, EM waves travel with 
velocity c, equal to that of light in free 
space. 

  
c � � �

1
3 10

0

8

� �0

m / s ,
 

  where µ
0 

(4π×10-7 Tm/A) is permeability 
and ε

0 
(8.85×10-12 C2/Nm2) is permittivity 

of free space. 
 7)  In a given material medium, the velocity 

(vm) of EM waves is given by vm �
1

��
 

  where µ is the permeability and ε is the 

Do you know ?
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permittivity of the given medium. 
 8)  The EM waves obey the principle of 

superposition. 
 9)  The ratio of the amplitudes of electric and 

magnetic fields is constant at any point and 
is equal to the velocity of the EM wave.

  

| E |=c | B |     
| E |

| B |
 =

1
0 0

0

0 0 0

� �� � �� � ��
� ��or

� �
 
--- (13.1)

  E   B0 0

� �� � ��
and  are the amplitudes of E

��
 and  

B
��

 respectively. 

 10) As the electric field vector ( E
��

0 ) is more 
prominent than the magnetic field vector 

( B
��

0 ), it is responsible for  optical effects 
due to EM waves. For this reason, electric 
vector is called light vector.

 11) The intensity of a wave is proportional to 
the square of its amplitude and is given by 
the equations

    
I E I

B
E B� �

1

2

1

20 0
2

2

0

�
�

,  0

 
--- (13.2)

 12) The energy of EM waves is distributed 
equally between the electric and magnetic 
fields. I

E
 = I

B
 

Example 13.1: Calculate the velocity of EM 
waves in vacuum. 

Solution: The velocity of EM wave in free 
space is given by

c

c

� �
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�
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Example 13.2: In free space, an EM wave of 
frequency 28 MHz travels along the x-direction. 
The amplitude of  the electric field is E = 9.6 
V/m and its direction is along the y-axis. What 
is amplitude and direction of magnetic field B? 

Solution : We have,

  

| |
| |  V / m

m / s

T

B
E

c

B

� �
�

� � �

9 6

3 10

3 2 10

8

8

.

.  
It is given that E is along y-direction and 

the wave propagates along x-axis. The magnetic 
field B should be in a direction perpendicular to 

According to quantum theory, an 
electron, while orbiting around the nucleus 
in a stable orbit does not emit EM radiation 
even though it undergoes acceleration. It 
will emit an EM radiation only when it falls 
from an orbit of higher energy to one of 
lower energy.

EM waves (such as X-rays) are 
produced when fast moving electrons hit 
a target of high atomic number (such as 
molybdenum, copper, etc.).

An electric charge at rest has an 
electric field in the region around it but has 
no magnetic field. When the charge moves, 
it produces both electric and magnetic 
fields. If the charge moves with a constant 
velocity, the magnetic field will not change 
with time and as such it cannot produce an 
EM wave. But if the charge is accelerated, 
both the magnetic and electric fields change 
with space and time and an EM wave is 
produced. Thus an oscillating charge emits 
an EM wave which has the same frequency 
as that of the oscillation  of the charge.

both x- and y-axes. As per property (2) of EM 
waves, E ×B

�� ��
 should be along the direction of 

propagation which is along the x- axis 
Since (+ j ) ×(+ k ) = i , B is along the k , 

i.e., along the z-direction. 
Thus, the amplitude of B = 3.2×10-8 T and 

its direction is along the z-axis. 	

Example 13.3:  A beam of red light has an 
amplitude 2.5 times the amplitude of second 
beam of the same colour. Calculate the ratio of 
the intensities of the two waves. 

Solution:  Intensity ∝ (Amplitude)2 
  I

2
 ∝ (a)2  and I

1
 ∝ (2.5a)2 

  
� � � �

I

I
1

2

(2.5) 6.25
( . )2 5 2

2
2

a

a .
In an EM wave, the magnetic field and 

electric field both vary sinusoidally with x. For 
a wave travelling along x-axis having E

��
 along 

y-axis and B


 along the z axis, with reference to 
Chapter 8, we can write Ey and B

z
 as

Do you know ?
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  Ey= E0 sin (kx-ωt)  --- (13.2)

 and B
z
= B0 sin (kx-ωt),  --- (13.3)

where E0 is the amplitude of the electric field 
E

y
 and B0 is the amplitude of the magnetic field 

B
z
. k �

2�
�

 is the propagation constant and l  

is the wavelength of the wave. ω = 2πυ is the 
angular frequency of oscillations, υ being the 
frequency of the wave. 

Both the electric and magnetic fields 
attain their maximum (and minimum) values at 
the same time and at the same point in space, 
i.e., E

��
 and B

��
 oscillate in phase with the same 

frequency.

Example 13.4: An EM wave of frequency 
50 MHz travels in vacuum along the positive 
x-axis and E

��
 at a particular point, x and at a 

particular instant of time t is 9.6 j  V/m. Find 
the magnitude and direction of B

��
 at this point 

x and at time t.

Solution :  B =
E

c
�

�
� � �9 6

3 10
3 2 10

8
8.

.  T

As the wave propagates along +x axis and 
E is along +y axis, direction of B will be along 

+z-axis i.e. B = 3.2×10-8 k  T.

Example 13.5: For an EM wave propagating 
along x direction, the magnetic field oscillates 
along the z-direction at a frequency of 3×1010 
Hz and has amplitude of 10-9 T.

a) What is the wavelength of the wave?

b) Write the expression representing the 
corresponding electric field.

Solution :

     a)  �
�

=
m / s

/ s
m

c
�

�
�

� �3 10

3 10
10

8

10
2

      b) E
0
= cB

0
= (3×108 m/s) × (10-9 T) = 0.3 V/m. 

Since B acts along z-axis, E acts along y-axis. 
Expression representing the oscillating electric 
field is 
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Example 13.6: The magnetic field of 
an EM wave travelling along x-axis is  

B


 =  k  4×10-4 sin (ωt - kx). Here B is in tesla, t is 
in second and x is in m. Calculate the peak value 
of electric force acting on a particle of charge 5 
µC travelling with a velocity of 5×105 m/s along 
the y-axis.

Solution :

B
0
= 4×10-4 T, q = 5 µC = 5×10-6 C

v = 5×105 m/s

E
0
= cB

0
=(3×108) × (4×10-4) 

=12×104  N/C 

Maximum electric force  = qE
0
 

  = (5×10-6) (12×104) 
  = 60×10-2 
  = 0.6 N

13.3 Electromagnetic Spectrum:
The orderly distribution (sequential 

arrangement) of EM waves according to their 
wavelengths (or frequencies) in the form of 
distinct groups having different properties 
is called the EM spectrum (Fig. 13.2). The 
properties of different types of EM waves are 
given in Table 13.1.

Fig. 13.2: Electromagnetic spectrum.
We briefly describe different types of EM 

waves in the order of decreasing wavelength (or 
increasing frequency).
13.3.1 Radio waves :

Radio waves are produced by accelerated 
motion of charges in a conducting  wire. The 
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Notation used for high frequencies 
1 kHz = one kilo Hertz =1000 Hz = 103 Hz
1 MHz = one mega Hertz = 106 Hz
1 GHz = one giga Hertz =109 Hz
Notation used for small wavelengths
1 µm = one micrometer = 10-6 m
1 Å= one angstrom = 10-10 m= 10-8 cm
1nm = one nanometer = 10-9 m

frequency of waves produced by the circuit 
depends upon the magnitudes of the inductance 
and the capacitance (This will be discussed 
in XIIth standard). Thus, by choosing suitable 
values of the inductance and the capacitance, 
radio waves of desired frequency can be 
produced.
Properties :
 1)  They have very long wavelengths ranging 

from a few centimetres to a few hundreds 
of kilometres.

 2)  The frequency range of AM band is 530 
kHz to 1710 kHz. Frequency of the waves 
used for TV-transmission range from 54 
MHz to 890 MHz, while those for FM radio 
band range from 88 MHz to 108MHz.

Uses : 
 1)  Radio waves are used for wireless 

communication purpose. 
 2)  They are used for radio broadcasting and 

transmission of TV signals. 
 3)  Cellular phones use radio waves to 

transmit voice communication in the ultra 
high frequency (UHF) band.

Table 13.1: Properties of different types of EM waves

Name Wavelength 
range in m

Frequency 
range in Hz

Generated By

Gamma 
rays

6×10-13 to 1×10-10 5×1020 to 3×1018 a) Transitions of nuclear energy levels
b) Radioactive substances

X-rays 1×10-11 to 3×10-8 3×1019 to 1×1016 a) Bombardment of high energy
    electrons (keV)  on a high atomic 
    number target (Cu, Mg, Co)
b) Energy level transitions of 
    innermost orbital electrons 

Ultraviolet
(UV waves)

3×10-8 to 4×10-7 1×1016 to 8×1014 Rearrangement of orbital electrons of 
atom between energy levels. As in high 
voltage gas discharge tube, the Sun and 
mercury vapour lamp, etc.

Visible light 4×10-7 to 8×10-7 8×1014 to 4×1014 Rearrangement of outer orbital 
electrons in atoms and molecules e.g., 
gas discharge tube 

Infrared (IR) 
radiations

8×10-7 to 3×10-4 4×1014 to 1×1012 Hot objects

Microwaves 3×10-4 to 6×10-2 1×1012 to 5×109 Special electronic devices such as 
klystron tube 

Radio waves 6×10-4 to 1×105 5×1011 to 8×1010 Acceleration of electrons in circuits 

13.3.2 Microwaves :
These waves were discovered of by H. 

Hertz in 1888. Microwaves are produced by 
oscillator electric circuits containing a capacitor 
and an inductor. They can be produced by 
special vacuum tubes.
Properties
 1)  They heat certain substances on which 

they are incident.
 2)  They can be detected by crystal detectors.
Uses
 1)  Used for the transmission of TV signals. 
 2)  Used for long distance telephone 

communication.
 3)  Microwave ovens are used for cooking.
 4)  Used in radar systems for the location of 
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distant objects like ships, aeroplanes etc,
 5)  They are used in the study of atomic and 

molecular structure.
13.3.3 Infrared waves 

These waves were discovered by William 
Herschel (1737-1822)  in 1800. All hot bodies 
are sources of infrared rays. About 60% of 
the solar radiations are infrared in nature. 
Thermocouples, thermopile and bolometers are 
used to detect infrared rays.
Properties 
 1) When infrared rays are incident on any 

object, the object gets heated.
 2)  These rays are strongly absorbed by glass. 
 3)  They can penetrate through thick columns 

of fog, mist and cloud cover. 
Uses 
 1)  Used in remote sensing.
 2)  Used in diagnosis of superficial tumours 

and varicose veins.
 3)  Used to cure infantile paralysis and to 

treat sprains, dislocations and fractures. 
 4)  They are used in Solar water heaters and 

cookers. 
 5)  Special infrared photographs of the body 

called thermograms, can reveal diseased 
organs because these parts radiate less 
heat than the healthy organs. 

 6) Infrared binoculars and thermal imaging 
cameras are used in military applications 
for night vision.

 7)  Used to keep green house warm. 
 8)  Used in remote controls of TV, VCR, etc
13.3.4 Visible light :

It is the most familiar form of EM waves. 
These waves are detected by human eye. 
Therefore this wavelength range is called the 
visible light. The visible light is emitted due to 
atomic excitations.

Properties : 

 1)  Different wavelengths give rise to different 
colours. These are given in Table 13.2.

 2)  Visible light emitted or reflected from 
objects around us provides us information 
about those objects and hence about the 
surroundings.

Stars and galaxies emit different types 
of waves. Radio waves and visible light can 
pass through the Earth’s atmosphere and 
reach the ground without getting absorbed 
significantly. Thus the radio telescopes 
and optical telescopes can be placed on the 
ground. All other type of waves get absorbed 
by the atmospheric gases and dust particles. 
Hence, the γ-ray, X-ray, ultraviolet, infrared, 
and microwave telescopes are kept aboard 
artificial satellites and are operated remotely 
from the Earth. Even though the visible 
radiation reaches the surface of the Earth, 
its intensity decreases to some extent due 
to absorption and scattering by atmospheric 
gases and dust particles. Optical telescopes 
are therefore located at higher altitudes. 

The Indian Giant Metrewave Radio 
Telescope (GMRT) near Pune is an important 
milestone in the field of Radio-astronomy. 
Also, Indian Astronomical Observatory 
houses the Himalayan Chandra Telescope 
(HCT), the 2 m optical-IR Telescope, which 
is situated at Hanle, Ladakh, at an altitude of 
4500 m.    

Do you know ?

Table 13.2: Wavelengths of colours in 
visible light

Colour Wavelength
violet 380-450 nm
blue 450-495 nm
green 495-570 nm
yellow 570-590 nm
orange 590-620 nm
red 620-750 nm

13.3.5 Ultraviolet rays :

Ultraviolet rays were discovered by 
J. Ritter (1776-1810) in 1801. They can be 
produced by the mercury vapour lamp, electric 
spark and carbon arc lamp. They can also be 
obtained by striking electrical discharge in 
hydrogen and xenon gas tubes. The Sun is the 
most important natural source of  ultraviolet 
rays, most of which are absorbed by the ozone 
layer in the Earth’s  atmosphere.   
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Properties
 1)  They are high energy EM waves.
 2)  They are not deflected by electric and 

magnetic fields.
 3)  X-rays ionize the gases through which 

they pass.
 4)  They have high penetrating power. 
 5)  Their over dose can kill living plant and 

animal overdose tissues and hence are 
harmful.

Uses
 1)  Useful in the study of the structure of 

crystals. 
 2)  X-ray photographs are useful to detect 

bone fracture. X-rays have many other 
medical uses such as CT scan.

 3)  X-rays are used to detect flaws or cracks in 
metals. 

 4)  These are used for detection of explosives, 
opium etc. 

13.3.7 Gamma Rays (γ-rays)
Discovered by P. Villard (1860-1934) in 

1900. Gamma rays are emitted from the nuclei 
of some radioactive elements such as uranium, 
radium etc.
Properties
 1)  They are highest energy EM waves. 

(energy range keV - GeV) 
 2)  They are highly penetrating. 
 3)  They have a small ionising power.
 4)  They kill living cells.
Uses
 1)  Used as insecticide disinfection for wheat 

and flour.
 2)  Used for food preservation. 
 3)  Used in radiotherapy for the treatment of 

cancer and tumour. 
 4)  They are used to produce nuclear 

reactions.

13.4 Propagation of EM Waves:
You must have seen a TV antenna used to 

receive the TV signals from the transmitting  
tower or from a satellite. In communication 
using radio waves, an antenna in the transmitter 
radiates the EM waves, which travel through 
space and reach the receiving antenna at the 
other end. As the EM wave travels away from 
the transmitter; the strength of the wave keeps 

Properties :

 1)  They produce fluorescence in certain 
materials, such as 'phosphors'.

 2)  They cause photoelectric effect.
 3)  They cannot pass through glass but pass 

through quartz, fluorite, rock salt etc. 
 4)  They possess the property of synthesizing 

vitamin D, when skin is exposed to them.
Uses :  

 1)  Ultraviolet rays destroy germs and bacteria 
and hence they are used for sterilizing 
surgical instruments and for purification 
of water.

 2)  Used in burglar alarms and security 
systems. 

 3)  Used to distinguish real and fake gems.
 4)  Used in analysis of chemical compounds.
 5) Used to detect forgery.

1. A fluorescent light bulb is coated from 
with a powder inside and contains a gas; 
electricity causes the gas to emit ultraviolet 
radiation, which then stimulates the tube 
coating to emit light.
2. The pixels of a television or computer 
screen fluoresce when electrons from an 
electron gun strike them.
3. What we call 'visible light' is just the part 
of the EM spectrum that human eyes see. 
Many other animals would define 'visible' 
somewhat differently. For instance, many 
animals including insects and birds, see 
in the UV region. Natural world is full of 
signals that animals see and humans cannot. 
Many birds including bluebirds, budgies, 
parrots and even peacocks have ultraviolet 
patterns that make them even more vivid to 
each other than they are to us.

Do you know ?

13.3.6 X-rays:
German physicist W. C. Rontgen (1845-

1923) discovered X-rays in 1895 while studying 
cathode rays (which is a stream of electrons 
emitted by the cathode in a vacuum tube). 
X-rays are also called Rontgen rays. X-rays 
are produced when cathode rays are suddenly 
stopped by an obstacle. 
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Ionizing radiations : 
Ultraviolet, X-ray and gamma rays 

have sufficient energy to cause ionization 
i.e. they strip electrons from atoms and 
molecules lying along their path. The atoms 
lose their electrons and are then known as 
ions. Ionization is harmful to human beings 
because it can kill or damage living cells, 
or make them grow abnormally as cancers. 
Fluorescent lamps are based on ionization of 
gas. Ionizing radiation is also used in various 
equipments in laboratory and industry.

Do you know ?

on decreasing. Several factors influence the 
propagation of EM waves and the path they 
follow. It is also important to understand the 
composition of the Earth’s  atmosphere as 
it plays a vital role in the propagation of EM 
waves. Different layers of Earth’s  atmosphere 
are shown in Fig. 13.3. 

X-rays have many practical applications 
in medicine and industry. Because X-ray 
photons are of such high energy, they can 
penetrate several centimetres of solid matter 
and can be used to visualize the interiors of 
materials that are opaque to ordinary light.

Do you know ?

Fig. 13.4: Propagation of EM waves.
13.4.1 Ground (surface) wave:

When a radio wave from a transmitting 
antenna propagates near surface of the  Earth  
so as to reach the receiving antenna, the wave 
propagation is called ground wave or surface 
wave propagation.

In this mode, radio waves travel close to 
the surface of the  Earth  and move along its 
curved surface from transmitter to receiver.

The radio waves induce currents in the 
ground and lose their energy by absorption. 
Therefore, the signal cannot be transmitted over 
large distances. Radio waves having frequency 
less than 2 MHz (in the medium frequency band) 
are transmitted by ground wave propagation. 
This is suitable for local broadcasting only. 
For TV or FM signals (very high frequency), 
ground wave propagation cannot be used. 
13.4.2 Space wave:

When the radio waves from the transmitting 
antenna reach the receiving antenna either 
directly along a straight line (line of sight) or 
after reflection from the ground or satellite or 
after reflection from troposphere, the wave 
propagation is called space wave propagation. 
The radio waves reflected from troposphere are 
called tropospheric waves. Radio waves with 
frequency greater than 30 MHz can pass through 
the ionosphere (60 km - 1000 km) after suffering 
a small deviation. Hence, these waves cannot be 
transmitted by space wave propagation except 
by using a satellite. Also, for TV signals which 
have high frequency, transmission over long 
distance is not possible by means of space wave 
propagation.

The maximum distance over which a signal 
can reach is called its range. For larger TV 

Fig 13.3:  Earth  and atmospheric layers. 
Different modes of propagation of EM 

waves are described below and are shown in 
Fig. 13.4.
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coverage, the height of the transmitting antenna 
should be as large as possible. This is the reason 
why the transmitting and receiving antennas are 
mounted on top of high rise buildings.

Range is the straight line distance from the 
point of transmission (the top of the antenna) 
to the point on Earth where the wave will hit 
while travelling along a straight line. Range is 
shown by d in Fig. 13.5. Let the height of the 
transmitting antenna (AA') situated at A be h. B 
represents the point on the surface of the Earth  
at which the space wave hits the Earth. The 
triangle OA'B is a right angled triangle. From 
∆ OA' B we can write 

OA'2 = A'B2 + OB2

(R+h)2 = d2 + R2 

or R2 + h2 + 2Rh = d2 + R2

As h << R, we can ignore h2 and write
d Rh≅ 2   
The range can be increased by mounting 

the receiver at a height h' say at a point C on the 
surface of the Earth. The range increases to d + 
d' where d' is 2Rh '  Thus

Total range = d d Rh Rh� � �' '2 2  

  
 
Fig. 13.5: Range of the signal (not to scale).

Example 13.7: A radar has a power of 10 kW 
and is operating at a frequency of 20 GHz. It 
is located on the top of a hill of height 500 m. 
Calculate the  maximum distance  upto which it 
can detect object located on the surface of the  
Earth . (Radius of Earth = 6.4×106  m)
Solution:

Maximum distance (range) =

d = Rh2

   =  m

   =  km,

2 6 4 10 500

8 10 80

6

4

� � �

� �

( . )

where R is radius of the  Earth  and h is the 
height of the radar above Earth’s  surface.

Example 13.8: If the height of a TV transmitting 
antenna is 128 m, how much square area can be 
covered by the transmitted signal if the receiving 
antenna is at the ground level? (Radius of the  
Earth  = 6400 km) 
Solution:

Range = 2
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Example 13.9: The height of a transmitting 
antenna is 68 m and the receiving antenna is 
at the top of a tower of height 34 m. Calculate 
the maximum distance between them for 
satisfactory transmission in line of sight mode. 
(radius of Earth = 6400 km)

h
t
 = 68 m, h

r
 = 34m, R = 6400 km = 6.4×106m

Solution:

d Rh Rhmax t r2 2

    =  

    = 
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    =
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13.4.3 Sky wave propagation:

When radio waves from a transmitting 
antenna reach the receiving antenna after 
reflection in the ionosphere, the wave 
propagation is called sky wave propagation.

The sky waves include waves of frequency 
between 3 MHz and 30 MHz. These waves 
can suffer multiple reflections between the 
ionosphere and the Earth. Therefore, they can 
be transmitted over large distances.
Critical frequency : It is the maximum value 
of the frequency of radio wave which can be 
reflected back to the Earth from the ionosphere 
when the waves are directed normally to 
ionosphere.
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Skip distance (zone) : It is the shortest distance 
from a transmitter measured along the surface 
of the Earth at which a sky wave of fixed 
frequency (if grater than critical frequency) will 
be returned to the Earth so that no sky waves 
can be received within the skip distance.

13.5 Introduction to Communication System: 
Communication is exchange of information. 

Since ancient times it is practiced in various 
ways e.g., through speaking, writing, singing, 
using body language etc. After the discovery 
of electricity in the late 19th century,  human 
communication systems changed dramatically. 
Modern communication is based upon the 
discoveries and inventions by a number of 
scientists like J. C. Bose (1858-1937), S. F. B. 
Morse (1791-1872), G. Marconi (1874-1937) 
and Alexander Graham Bell (1847-1922) in the 
19th and 20th centuries.

In the 20th century we could send messages 
over large distances using analogue signals, 
cables and radio waves. With the advancements 
of digitization technologies, we can now 
communicate with the entire world almost in 
real time.

The ability to communicate is an important 
feature of modern life. We can speak directly to 
others all around the world and generate vast 
amount of information every day. 

Here we will briefly discuss how 
communication systems work. A communication 
system is a device or set up used in transmission 
and reception of information from one place to 
another.
13.5.1 Elements of a communication system:

There are three basic (essential) elements 
of every communication system: a) Transmitter, 
b) Communication channel and c) Receiver.

Fig. 13.6: Block diagram of the basic elements 
of a communication system.

In a communication system, as shown 
in Fig. 13.6,  the transmitter is located at one 

place and the receiver at another place. The 
communication channel is a passage through 
which signals transfer in between a transmitter 
and a receiver. This channel may be in the form 
of wires or cables, or may also be wireless, 
depending on the types of communication 
system. 

There are two basic modes of 
communication: (i) point to point communication 
and (ii) broadcast. 

In point to point communication mode, 
communication takes place over a link between a 
single transmitter and a receiver e.g. Telephony. 
In the broadcast mode there are large number of 
receivers corresponding to the single transmitter 
e.g., Radio and Television transmission.
13.5.2  Commonly used terms in electronic 

communication system:
Following terms are useful to understand 

any communication system: 
1) Signal :- The information converted into 
electrical form that is suitable for transmission 
is called a signal. In a radio station, music and 
speech are converted into electrical form by a 
microphone for transmission into space. This 
electrical form of sound is the signal. A signal 
can be analog or digital as shown in Fig. 13.7.

       
Fig 13.7: (a) Analog signal. (b) Digital signal. 
 (i)  Analog signal: A continuously varying 

signal (voltage or current) is called 
an analog signal. Since a wave is a 
fundamental analog signal, sound and 
picture signals in TV are analog in nature 
(Fig 13.7 a)

 (ii)  Digital signal : A signal (voltage or current) 
that can have only two discrete values 
is called a digital signal. For example, a 
square wave is a digital signal. It has two 
values viz, +5 V and 0 V. (Fig- 13.7 b)

2) Transmitter :- A transmitter converts the 
signal produced by a source of information 
into a form suitable for transmission through a 
channel and subsequent reception.

(a) (b)
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3) Transducer :- A device that converts one 
form of energy into another form of energy is 
called a transducer. For example, a microphone 
converts sound energy into electrical energy. 
Therefore, a microphone is a transducer. 
Similarly, a loudspeaker is a transducer which 
converts electrical energy into sound energy.
4) Receiver :- The receiver receives the message 
signal at the channel output, reconstructs it in 
recognizable form of the original message for 
delivering it to the user of information.
5) Noise :- A random unwanted signal is called 
noise. The source generating the noise may be 
located inside or outside the system. Efforts 
should be made to minimise the noise level in a 
communication system.
6) Attenuation :- The loss of strength of the 
signal while propagating through the channel 
is known as attenuation. It occurs because the 
channel distorts, reflects and refracts the signals 
as it passes through it.
7) Amplification :- Amplification is the 
process of raising the strength of a signal, using 
an electronic circuit called amplifier.
8) Range :- The maximum (largest) distance 
between a source and a destination up to which 
the signal can be received with sufficient 
strength is termed as range.
9) Bandwidth :- The bandwidth of an electronic 
circuit is the range of frequencies over which it 
operates efficiently.
10) Modulation :- The signals in communication 
system (e.g. music, speech etc.) are low 
frequency signals and cannot be transmitted 
over large distances. In order to transmit the 
signal to large distances, it is superimposed on 
a high frequency wave (called carrier wave). 
This process is called modulation. Modulation 
is done at the transmitter and is an important 
part of a communication system.
11) Demodulation :- The process of regaining 
signal from a modulated wave is called 
demodulation. This is the reverse process of 
modulation.
12) Repeater :- It is a combination of a 
transmitter and a receiver. The receiver receives 
the signal from the transmitter, amplifies it and 
transmits it to the next repeater. Repeaters are 

used to increase the range of a communication 
system. These are shown in Fig. 13.8.

Fig.13.8: Use of repeater station to increase 
the range of communication.

To transmit a signal we need an antenna 
or an aerial. For efficient transmission and 
reception, the transmitting and receiving 
antennas must have a length at least l/4 
where l is  the wavelength of the signal.

For an audio signal of 15kHz, the 
required length of the antenna is l/4 which 
can be seen to be equal to 5 km. 

The highest TV tower in Rameshwaram, 
Tamilnadu, is the tallest tower in India and 
is ranked 32nd in the world with pinnacle 
height of 323 metre. It is used for television 
broadcast by the Doordarshan.

Do you know ?

13.6 Modulation: 
As mentioned earlier, an audio signal has 

low frequency (< 20 KHz). Low frequency 
signals can not be transmitted over large 
distances. Because of this, a high frequency 
wave, called a carrier wave, is used. Some 
characteristic (e.g. amplitude, frequency or 
phase) of this wave is changed in accordance 
with the amplitude of the signal. This process 
is known as modulation. Modulation also 
helps avoid mixing up of signals from different 
transmitters as different carrier wave frequencies 
can be allotted to different transmitters. Without 
the use of these waves, the audio signals, if 
transmitted directly by different transmitters, 
would have got mixed up.

Modulation can be done by modifying 
the (i) amplitude (amplitude modulation)  
(ii) frequency (frequency modulation), and (iii) 
phase (phase modulation) of the carrier wave in 
proportion to the amplitude or intensity of the 
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signal wave keeping the other two properties 
same. Figure 13.9 (a) shows a carrier wave 
and (b) shows the signal. The carrier wave is 
a high frequency wave while the signal is a 
low frequency wave. Amplitude modulation, 
frequency modulation and phase modulation of 
carrier waves are shown in Fig. 13.9 (c), (d) and 
(e) respectively.

Amplitude modulation (AM) is simple 
to implement and has large range. It is also 
cheaper. Its disadvantages are that (i) it is not 
very efficient as far as power usage is concerned 
(ii) it is prone to noise and (iii) the reproduced 
signal may not exactly match the original signal. 
In spite of this, these are used for commercial 
broadcasting in the long, medium and short 
wave bands.

Frequency modulation (FM) is more 
complex as compared to amplitude modulation 
and, therefore is more difficult to implement. 
However, its main advantage is that it 
reproduces the original signal closely and is less 

susceptible to noise. This modulation is used for 
high quality broadcast transmission. 

Phase modulation (PM) is easier than 
frequency modulation. It is used in determining 
the velocity of a moving target which cannot be 
done using frequency modulation.          
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Fig. 13.9: (a) Carrier wave, (b) signal (c) 
AM (d) FM and (e) PM. 
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Internet my friend

Exercises Exercises

1. Choose the correct option.
 i)  The EM wave emitted by the Sun and 

responsible for heating the Earth’s  
atmosphere due to green house effect is 

  (A) Infra-red radiation  (B) X ray  
  (C) Microwave   (D) Visible light
 ii)   Earth ’s atmosphere is richest in 
  (A) UV   (B) IR  
  (C) X-ray  (D) Microwaves 
 iii)  How does the frequency of a beam of 

ultraviolet light change when it travels 
from air into glass?

  (A) No change   (B) increases  
  (C) decreases  (D) remains same
 iv)  The direction of EM wave is given by 
  (A) E ×B

�� ��
  (B)  E

��
 . B
��

  
(C) along E

��
  (D) along B

��

 v)  The maximum distance upto which TV 
transmission from a TV tower of height h 
can be received is proportional to 

  (A) h1/2    (B) h   
  (C) h3/2    (D) h2

  vi)  The waves used by artificial satellites for 
communication purposes are 

   (A) Microwave        
    (B) AM radio waves      
   (C) FM radio waves  
   (D) X-rays
 vii)  If a TV telecast is to cover a radius of 

640 km, what should be the height of 
transmitting antenna?

  (A) 32000 m  (B) 53000 m 
  (C) 42000 m  (D) 55000 m  
2. Answer briefly.
 i)  State two characteristics of an EM wave. 
 ii)  Why are microwaves used in radar? 
 iii)  What are EM waves?
 iv)  How are EM waves produced?
 v)  Can we produce a pure electric or 

magnetic wave in space? Why?
 vi)  Does an ordinary electric lamp emit EM 

waves?
 vii)  Why do light waves travel in vacuum 

whereas sound wave cannot?
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 viii)  What are ultraviolet rays? Give two uses.
 ix)  What are radio waves? Give its two 

uses. 
 x)  Name the most harmful radiation 

entering the Earth's atmosphere from the 
outer space.

 xi)  Give reasons for the following:
  (i) Long distance radio broadcast uses 

short wave bands.
  (ii) Satellites are used for long distance 

TV transmission.
 xii)  Name the three basic units of any 

communication system.
 xiii)  What is a carrier wave?
 xiv)  Why high frequency carrier waves are 

used for transmission of audio signals? 
 xv)  What is modulation?
 xvi)  What is meant by amplitude modulation?
 xvii)  What is meant by noise?
 xviii) What is meant by bandwidth?
 xix)  What is demodulation?
 xx)  What type of modulation is required for 

television broadcast?
 xxi)  How does the effective power radiated 

by an antenna vary with wavelength?
 xxii) Why should broadcasting programs use 

different frequencies?
 xxiii)  Explain the necessity of a carrier wave 

in communication.
 xxiv)  Why does amplitude modulation give 

noisy reception?
 xxv)  Explain why is modulation needed. 
2. Solve the numerical problem.
 i)  Calculate the frequency in MHz of a radio 

wave of wavelength 250 m. Remember 
that the speed of all EM waves in vacuum 
is 3.0×108 m/s. 

        [Ans: 1.2 MHz]
 ii)  Calculate the wavelength in nm of an 

X-ray wave of frequency 2.0×1018 Hz.
          [Ans: 0.15 nm] 

 iii)  The speed of light is 3×108 m/s. Calculate 
the frequency of red light of wavelength of 
6.5×10-7 m.

        [Ans: υ = 4.6×1014 Hz] 
 iv)  Calculate the wavelength of a microwave 

of frequency 8.0 GHz.
          [Ans: 3.75 cm]
 v)  In a EM wave the electric field oscillates 

sinusoidally at a frequency of 2×1010 Hz. 
What is the wavelength of the wave?

                 [Ans: 1.5×10-2 m]
 vi)  The amplitude of the magnetic field part 

of a harmonic EM wave in vacuum is  
B

0
= 5×10-7 T. What is the amplitude of the 

electric field part of the wave?
          [Ans: 150V/m]
 vii)  A TV tower has a height of 200 m. 

How much population is covered by TV 
transmission if the average population 
density around the tower is 1000/km2? 
(Radius of the Earth = 6.4×106 m)

              [Ans: 8×106]
viii)  Height of a TV tower is 600 m at a given 

place. Calculate its coverage range if the 
radius of the Earth is 6400 km. What 
should be the height to get the double 
coverage area?

       [Ans: 87.6 km, 1200 m]
 ix)  A transmitting antenna at the top of a tower 

has a height 32 m and that of the receiving 
antenna is 50 m. What is the maximum 
distance between them for satisfactory 
communication in line of sight mode ? 
Given radius of Earth is 6.4×106 m.       

      [Ans: 45.537 km]                

***
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14.1 Introduction:

Modern life is heavily dependent on many 
electronic gadgets. It could be a cell phone, a 
smart watch, a computer or even an LED lamp, 
they all have one common factor, semiconductor 
devices that make them work. Semiconductors 
have made our life very comfortable and easy.

Semiconductors are materials whose 
electrical properties can be tailored to suit 
our requirements. Before the discovery of 
semiconductors, electrical properties of 
materials could be of two types, conductors or 
insulators. Conductors such as metals have a 
very high electrical conductivity, for example, 
conductivity of silver is 6.25x107 Sm-1 whereas 
an insulator or a bad conductor like glass has 
a very low electrical conductivity of the order 
of 10-10 Sm-1. Electrical conductivity of silicon, 
a semiconductor, for example is 1.56x10-3 
Sm-1. It lies between that of a good conductor 
and a bad conductor.  A semiconductor can be 
customised to have its electrical conductivity as 
per our requirement. Temperature dependence 
of electrical conductivity of a semiconductor 
can also be controlled. Table 14.1 gives 
electrical conductivity of some materials which 
are commonly used.

14.2 Electrical conduction in solids:

Electrical conduction in a solid takes place 
by transport of charge carriers. It depends on 
its temperature, the number of charge carriers, 
how easily these carries can move inside a solid 
(mobility), its crystal structure, types and the 
nature of defects present in a solid etc. There 
can be three types of electrical conductors. It 
could be a good conductor, a semiconductor or 
a bad conductor. 

1. Conductors (Metals): The best example 
of a conductor is any metal. They have a large 

number of free electrons available for electrical 
conduction. (A typical metal will have 1028 
electrons per m3). Metals are good conductors 
of electricity due to the large number of free 
electrons present in them.   

2. Insulators: Glass, wood or rubber are some 
common examples of insulators. Insulators 
have very small number (1023 per m3) of free 
electrons.  

3. Semiconductors: Silicon, germanium, 
gallium arsenide, gallium nitride, cadmium 
sulphide are some of the commonly used 
semiconductors. The electrical conductivity of 
a semiconductor is between the conductivity 
of a metal and that of an insulator. The number 
of charge carriers in a semiconductor can 
be controlled as per our requirement.  Their 
structure can also be designed to suit our 
requirement. Such materials are very useful 
in electronic industry and find applications in 
almost every gadget of daily use such as a cell 
phone, a solar cell or a complex system such as 
a satellite or the International Space Station.

Table 14.1: Electrical conductivities of 
some commonly used materials

 

Silver 6.30 × 107

Copper 5.96 × 107

Aluminium 3.5 × 107

Gold 4.10 × 107

Nichrome 9.09 × 105

Platinum 9.43 × 106

Germanium 2.17
Silicon 1.56 × 10-3

Air 3 × 10-15 to 8 × 10-15

Glass 10-11 to 10-15

Teflon 10-25 to 10-23

Wood 10-16 to 10-24

Semiconductors14. 

 1.  Your mobile handset is very efficient gadget. 
 2. International Space Station works using 

solar energy. 

Can you recall?

 3. A LED TV screen produces brighter and 
vivid colours.

 4. Good and bad conductor of electricity.
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Figure 14.1 shows the temperature 
dependence of the electrical conductivity of a 
typical metal and a semiconductor. When the 
temperature of a semiconductor is increased, 
its electrical conductivity also increases. The 
electrical conductivity of a metal decreases with 
increase in its temperature. 

 

         
Fig. 14.1: Temperature dependence of 
electrical conductivity of (a) metals and  
(b)semiconductors.

Variation of electrical conductivity of 
semiconductors with change in its temperature 
is a very useful property and finds applications 
in a large number of electronic devices. A broad 
classification of semiconductors can be: 

a. Elemental semiconductors: Silicon, 
germanium 

b. Compound Semiconductors: Cadmium 
sulphide, zinc sulphide, etc. 

c. Organic Semiconductors: Anthracene, 
doped pthalocyanines, polyaniline etc.  

Elemental semiconductors and compound 
semiconductors are widely used in electronic 
industry. Discovery of organic semiconductors 
is relatively new and they find lesser 
applications.

Electrical properties of semiconductors are 
different from metals and insulators due to their 
unique conduction mechanism. The electronic 
configuration of the elemental semiconductors 
silicon and germanium plays a very important 
role in their electrical properties. They are from 
the fourth group of elements in the periodic 
table. They have a valence of four. Their atoms 
are bonded by covalent bonds. At absolute 
zero temperature, all the covalent bonds are 
completely satisfied in a single crystal of pure 
silicon or germanium.   

The conduction mechanism in a 
semiconductor can be better understood with 
the help of the band theory of solids. 

14.3  Band theory of solids, a brief 
introduction:

We begin with the way electron energies 
in an isolated atom are distributed. An isolated 
atom has its nucleus at the center which is 
surrounded by a number of revolving electrons. 
These electrons are arranged in different and 
discrete energy levels. 

When a solid is formed, a large number 
of atoms are packed in it. The outermost 
electronic energy levels in a solid are occupied 
by electrons from all atoms in a solid. Sharing 
of the outermost energy levels and resulting 
formation of energy bands can be easily 
understood by considering formation of solid 
sodium. 

The electronic configuration of sodium 
(atomic number 11) is 1s2, 2s2, 2p6, 3s1. The 
outermost level 3s can take one more electron 
but it is half filled in sodium.

When solid sodium is formed, atoms 
interact with each other through the electrons 
in each atom. The energy levels are filled 
according to the Pauli’s exclusion principle. 
According to this principle, no two electrons 
can have the same set of quantum numbers, or 
in simple words, no two electrons with similar 
spin can occupy the same energy level.  

Any energy level can accommodate only 
two electrons (one with spin up state and the 
other with spin down state). According to this 
principle, there can be two states per energy 
level. Figure 14.2 (a) shows the allowed energy 

Electrical conductivity σ of a solid is 
given by σ = nqµ, where, 

n = charge carrier density 
(number of carriers per unit volume)
q = charge on the carriers
� �  mobility of carriers  
Mobility of a charge carrier is the 

measure of the ease with which a carrier can 
move in a material under the action of an 
external electric field. It depends upon many 
factors such as mass of the carrier, whether 
the material is crystalline or amorphous, the 
presence of structural defects in a material, 
the nature of impurities in a material and so 
on.

Do you know ?
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levels of an isolated sodium atom by horizontal 
lines. The curved lines represent the potential 
energy of an electron near the nucleus due to 
Coulomb interaction.  

          
Fig. 14.2: Potential energy diagram, energy 
levels and bands (a) isolated atom, (b) two 
atoms, (c) sodium metal.

Consider two sodium atoms close enough 
so that outer 3s electrons are equally likely to 
be on any atom. The 3s electrons from both 
the sodium atoms need to be accommodated 
in the same level. This is made possible by 
splitting the 3s level into two sub-levels so that 
the Pauli’s exclusion principle is not violated. 
Figure 14.2 (b) shows the splitting of the 3s 
level into two sub levels. When solid sodium 
is formed, the atoms come close to each other 
(distance between them ∼ 2 - 3Å). Therefore, 
the electrons from different atoms interact 
with each other and also with the neighbouring 
atomic cores. The interaction between the 
outer most electrons is more due to overlap 
while the inner core electrons remain mostly 
unaffected.  Each of these energy levels is split 
into a large number of sub levels, of the order of 
Avogadro’s number. This is because the number 
of atoms in solid sodium is of the order of this 
number. The separation between the sublevels 
is so small that the energy levels appear almost 
continuous. This continuum of energy levels is 
called an energy band. The bands are called 1s 
band, 2s band, 2p band and so on. Figure 14.2 c 
shows these bands in sodium metal. Broadening 
of valence and higher bands is more because of 
stronger interaction of these electrons.

For sodium atom, the topmost occupied 
energy level is the 3s level. This level is called 
the valence level. Corresponding energy band 
is called the valence band. Thus, the valence 

band in solid sodium is the topmost occupied 
energy band. The valence band is half filled in 
sodium.  Figure 14.3 shows the energy bands in 
sodium. 

     Fig. 14.3: Energy bands in sodium. 
When sufficient energy is provided to 

electrons from the valence band they are 
raised to higher levels. The immediately next 
energy level that electrons from valence band 
can occupy is called conduction level. The 
band formed by conduction levels is called 
conduction band. In sodium valence and 
conduction bands overlap.

In a semiconductor or an insulator, there 
is a gap between the bottom of the conduction 
band and the top of the valence band. This is 
called the energy gap or the band gap. 

Fig. 14.4: Energy bands for a typical solid.
Figure 14.4 shows the conduction band, 

the energy gap and the valence band for a 
typical solid which is not a good conductor. It 
is important to remember that this structure 
is related to the energy of electrons in a 
solid and it does not represent the physical 
structure of a solid in any way. 

All the energy levels in a band, including 
the topmost band, in a semiconductor are 
completely occupied at absolute zero. At 
some finite temperature T, few electrons gain 
thermal energy of the order of kT, where k is the 
Boltzmann constant. 

Electrons in the bands below the valence 
band cannot move to higher band since these 
are already occupied. Only electrons from 
the valence band can be excited to the empty 
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sufficient energy and occupy energy levels in 
the conduction band.

The magnitude of the band gap plays a 
very important role in electronic properties of 
a solid. 

Table 14.2: Magnitude of energy gap in 
silicon, germanium and diamond. 

Material Energy gap (eV)

At 300 K
Silicon 1.12
Germanium 0.66

Diamond 5.47

1 eV is the energy gained by an electron 
while it overcomes a potential difference of 
one volt. 1 ev = 1.6 × 10-19 J.

14.4 Intrinsic Semiconductor:

A pure semiconductor such as pure silicon 
or pure germanium is called an intrinsic 
semiconductor. Silicon (Si) has atomic number 
14 and its electronic configuration is 1s2 2s2 2p6 
3s2 3p2. Its valence is 4. Each atom of Si forms 
four covalent bonds with its neighbouring 
atoms. One Si atom is surrounded by four Si 
atoms at the corners of a regular tetrahedron 
Fig. 14.6. 

\

Fig. 14.6: Structure of silicon.
At absolute zero temperature, all valence 

electrons are tightly bound to respective atoms 
and the covalent bonds are complete. Electrons 
are not available to conduct electricity through 
the crystal because they cannot gain enough 
energy to get into higher energy levels. At 
room temperature, however, a few covalent 
bonds are broken due to thermal agitation and 
some valence electrons can gain energy. Thus 
we can say that a valence electron is moved to 
the conduction band. It creates a vacancy in the 
valence band as shown in Fig. 14.7. 

Formation of energy bands in a solid is a 
result of the small distances between atoms, 
the resulting interaction amongst electrons 
and the Pauli’s exclusion principle. 

conduction band, if the thermal energy gained 
by these electrons is greater than the band gap.
In case of sodium, electrons from the 3s band 
can gain thermal energy and occupy a slightly 
higher energy level because the 3s band is only 
half filled. 

Electrons can also gain energy when 
an external electric field is applied to a solid. 
Energy gained due to electric field is smaller, 
hence only electrons at the topmost energy level 
gain such energy and participate in electrical 
conduction.

 (a)  (b)  (c)
Fig. 14.5: Band structure of a (a) metal,  
(b) semiconductor, and an insulator (c).

The difference in electrical conductivities 
of various solids can be explained on the basis 
of the band structure of solids. Band structure 
in a metal, semiconductor and an insulator 
is different. Figure 14.5 shows a schematic 
representation of band structure of a metal, a 
semiconductor and an insulator.

For metals, the valence band and the 
conduction band overlap and there is no band gap 
as shown in Fig.14.5 (a). Electrons, therefore, 
find it easy to gain electrical energy when some 
external electric field is applied. They are, 
therefore, easily available for conduction. 

In case of semiconductors, the band gap is 
fairly small, of the order of one electron volt 
or less as shown in Fig.14.5 (b). When excited, 
electrons gain energy and occupy energy levels 
in conduction band easily and can take part in 
electric conduction. 

Insulators, on the contrary, have a wide gap 
between valence band and conduction band as 
shown in Fig.14.5 (c). Diamond, for example, 
has a band gap of about 5.0 eV.  In an insulator, 
therefore, electrons find it very difficult to gain 



246

                 
Fig. 14.7: Creation of vacancy in the 
valence band.

These vacancies of electrons in the valence 
band are called holes. The holes are thus absence 
of electrons in the valence band and they carry 
an effective positive charge. 

For an intrinsic semiconductor, the number 
of holes per unit volume, (the number density, 
n

h
) and the number of free electrons per unit 

volume, (the number density, n
e
) is the same. 

  n
h 
=

  
n

e 

Electric conduction through an intrinsic 
semiconductor is quite interesting. There 
are two different types of charge carriers in a 
semiconductor. One is the electron and the other 
is the hole or absence of electron. Electrical 
conduction takes place by transportation of 
both carriers or any one of the two carriers 
in a semiconductor. When a semiconductor 
is connected in a circuit, electrons, being 
negatively charged, move towards positive 
terminal of the battery. Holes have an effective 
positive charge, and move towards negative 
terminal of the battery. Thus, the current 
through a semiconductor is carried by two 
types of charge carriers which move in opposite 
directions. This conduction mechanism makes 
semiconductors very useful in designing a 
large number of electronic devices. Figure 14.8 
represents the current through a semiconductor.  

               

Fig. 14.8: Current through a semiconductor, 
transport of electrons and holes.

14.5 Extrinsic semiconductors:

The electric conductivity of an intrinsic 
semiconductor is very low at room temperature; 
hence no electronic devices can be fabricated 

using them. Addition of a small amount of a 
suitable impurity to an intrinsic semiconductor 
increases its conductivity appreciably. The 
process of adding impurities to an intrinsic 
semiconductor is called doping. The 
semiconductor with impurity is called a doped 
semiconductor or an extrinsic semiconductor. 
The impurity is called the dopant. The parent 
atoms are called hosts. The dopant material 
is so selected that it does not disturb the 
crystal structure of the host. The size and the 
electronic configuration of the dopant should 
be compatible with that of the host.  Silicon or 
germanium can be doped with a pentavalent 
impurity such as phosphorus (P) arsenic (As) or 
antimony (Sb) . They can also be doped with a 
trivalent impurity such as boron (B) aluminium 
(Al) or indium (In). 

Addition of pentavalent or trivalent 
impurities in intrinsic semiconductors gives 
rise to different conduction mechanisms. 
This is very useful in designing many electronic 
devices. Extrinsic semiconductors can be of 
two types a) n-type semiconductor or b) p-type 
semiconductor.

a) n-type semiconductor: When silicon or 
germanium crystal is doped with a pentavalent 
impurity such as phosphorus, arsenic, or 
antimony we get n-type semiconductor. 
Figure 14.9 shows the schematic electronic 
structure of antimony.  

Fig. 14.9: Schematic electronic structure of 
antimony.

When a dopant atom of 5 valence electrons 
occupies the position of a Si atom in the crystal 
lattice, 4 electrons from the dopant form bonds 
with 4 neighbouring Si atoms and the fifth 
electron from the dopant remains very weakly 
bound to its parent atom. Figure 14.10 shows a 
pentavalent impurity in silicon lattice. 
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Fig. 14.10: Pentavalent impurity in silicon 
crystal. 

To make this electron free even at room 
temperature, very small energy is required. It is 
0.01 eV for Ge and 0.05 eV for Si. 

and holes are the minority carriers. Therefore, 
it is called n-type semiconductor. For n-type 
semiconductor, n

e 
>>

  
n

h
 .

The free electrons donated by the impurity 
atoms occupy energy levels which are in the 
band gap and are close to the conduction band. 
They can be easily available for conduction. 
Figure 14.11 shows the schematic band 
structure of an n-type semiconductor. 

                               
Fig.14.11: Schematic band structure of an 
n-type semiconductor. 

Extrinsic semiconductors are thus far better 
conductors than intrinsic semiconductors. The 
conductivity of an extrinsic semiconductor 
can be controlled by controlling the amount of 
impurities added. The amount of impurities is 
expressed as part per million or ppm, that is, 
one impurity atom per one million atoms of the 
host. 

Features of n-type semiconductors: These 
are materials doped with pentavalent impurity 
(donors) atoms . Electrical conduction in these 
materials is due to electrons as majority charge 
carriers.

 1. The donor atom lose electrons and become 
positively charged ions.

 2. Number of free electrons is very large 
compared to the number of holes, n

e
>>

  
n

h 
. 

Electrons are majority charge carriers.
 3. When energy is supplied externally, 

negatively charged free electrons (majority 
charges carries) and positively charged holes 
(minority charge carriers) are available for 
conduction.

b) p-type semiconductor: When silicon or 
germanium crystal is doped with a trivalent 
impurity such as boron, aluminium or indium, 
we get a p-type semiconductor. Figure 14.12 
shows the schematic electronic structure of 
boron. 

The dopant trivalent atom has one valence 
electron less than that of a silicon atom. Every 
trivalent dopant atom shares its three electrons 
with three neighbouring Si atoms to form 

One cm3 specimen of a metal or 
semiconductor has of the order of 1022 atoms. 
In a metal, every atom donates at least one free 
electron for conduction, thus 1 cm3 of metal 
contains of the order of 1022 free electrons, 
whereas 1 cm3 of pure germanium at 20 °C 
contains about 4.2×1022 atoms, but only 
2.5×1013 free electrons and 2.5×1013 holes. 
Addition of 0.001% of arsenic (an impurity) 
donates 1017 extra free electrons in the same 
volume and the electrical conductivity is 
increased by a factor of 10,000.

Do you know ?

Since every pentavalent dopant atom 
donates one electron for conduction, it is called 
a donor impurity. As this semiconductor has 
large number of electrons in conduction band 
and its conductivity is due to negatively charged 
carriers, it is called n-type semiconductor. The 
n-type semiconductor also has a few electrons 
and holes produced due to the thermally broken 
bonds. The density of conduction electrons (n

e
) 

in a doped semiconductor is the sum total of 
the electrons contributed by donors and the 
thermally generated electrons from the host.  The 
density of holes (n

h
) is only due to the thermal 

breakdown of some covalent bonds of the host 
Si atoms. Some electrons and holes recombine 
continuously because they carry opposite 
charges. The number of free electrons exceeds 
the number of holes.  Thus, in a semiconductor 
doped with pentavalent impurity, electrons 
(negative charge) are the majority carriers 
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covalent bonds. But the fourth bond between 
silicon atom and its neighbour is not complete. 

Fig. 14.12: Schematic electronic structure 
of boron. 

Figure 14.13 shows a trivalent impurity 
in a silicon crystal. The incomplete bond 
can be completed by another electron in the 
neighbourhood from Si atom. Since each donar 
trivalent atom can accept an electron, it is 
called an acceptor impurity. The shared electron 
creates a vacancy in its place. This vacancy or 
the absence of electron is a hole.  

               

Fig. 14.13: A trivalent impurity in a silicon 
crystal.

Thus, a hole is available for conduction 
from each acceptor impurity atom. Holes are 
majority carriers and electrons are minority 
carriers in such materials. Acceptor atoms are 
negatively charged and majority carriers are 
holes (positively charged). Therefore, extrinsic 
semiconductor doped with trivalent impurity 
is called a p-type semiconductor. For a p-type 
semiconductor, n

h
>>n

e
.

   

Fig. 14.14: Schematic band structure of a 
p-type semiconductor.

These vacancies of electrons are created 
in the valence band; therefore we can say that 
the holes are created in the valence band. The 
impurity levels are created just above the valence 
band in the band gap. Electrons from valence 
band can easily occupy these levels and conduct 
electricity. Figure 14.14 shows the schematic 
band structure of a p-type semiconductor. 

Features of p-type semiconductor: These are 
materials doped with trivalent impurity atoms 
(acceptors). Electrical conduction in these 
materials is due to holes as majority charge 
carriers. 
1. The acceptor atoms acquire electron and 

become negatively charged-ions.
2.  Number of holes is very large compared 

to the number of free electrons. (n
h    

n
e
). 

Holes are majority charge carriers.  
3. When energy is supplied externally, 

positively charged holes (majority 
charge carriers) and negatively   
charged free electrons (minority charge 
carriers) are available for conduction.

c) Charge neutrality of extrinsic 
semiconductors: The n-type semiconductor 
has excess of electrons but these extra electrons 
are supplied by the donor atoms which 
become positively charged.  Since each atom 
of donor impurity is electrically neutral, the 
semiconductor as a whole is electrically neutral.  
Here, excess electron refers to an excess with 
reference to the number of electrons needed to 
complete the covalent bonds in a semiconductor 
crystal. These extra free electrons increase the 
conductivity of the semiconductor. 

Similarly, a p-type semiconductor has holes 
or absence of electrons in some energy levels. 
When an electron from a host atom fills this 
level, the host atom is positively charged and 
the dopant atom is negatively charged but the 
semiconductor as a whole is electrically neutral.  
Thus, n-type as well as p-type semiconductors 
are electrically neutral.
Always remember, for a semiconductor,  

ne
.n

h
 = n

i
2 

Example 14.1: A pure Si crystal has 4 × 1028 
atoms m-3. It is doped by 1ppm concentration 
of antimony. Calculate the number of electrons 
and holes. Given n

i
 = 1.2 x 1016/m3.
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Example 14.2:  A pure silicon crystal at 
temperature of 300 K has electron and hole 
concentration 1.5 × 1016 m-3 each. (n

e
 = n

h
). 

Doping by indium increases n
h
 to 4.5× 1022 m-3 . 

Calculate n
e
 for the doped silicon crystal. 

Solution:  We know,

n
e
 n

h
 = n

i
2  and n

e
 = 

n

n
i

h

� �2

Given

n
i
 = 1.5 x 1016m-3 and n

h
 = 4.5 × 1022 m-3

n
e
 = 

( . )

.

1 5 10

4 5 10

16 2

22

�x�

� �x�
 = 5 × 109 m-3

14.6 p-n junction: 

When n-type and p-type semiconductor 
materials are fused together, a p-n junction is 
formed. A p-n junction shows many interesting 
properties and it is the basis of almost all 
modern electronic devices. Figure 14.15 shows 
a schematic structure of a p-n junction.  

                         
Fig. 14.15: Schematic structure of a p-n 
junction.

Diffision: When n-type and p-type 
semiconductor materials are fused together, 
initially, the number of electrons in the n-side 
of the junction is very large compared to the 
number of electrons on the p-side. The same is 
true for the number of holes on the p-side and on 
the n-side. Thus, the density of carriers on both 
sides is different and a large density gradient 
exists on both sides of the p-n junction. This 
density gradient causes migration of electrons 
from the n-side to the p-side of the junction. 
They fill up the holes in the p-type material and 
produce negative ions.

When the electrons from the n-side of a 
junction migrate to the p-side, they leave behind 
positively charged donor ions on the n-side. 
Effectively, holes from the p-side migrate into 
the n-region. 

As a result, in the p-type region near the 
junction there are negatively charged acceptor 
ions, and in the n-type region near the junction 
there are positively charged donor ions. The 
transfer of electrons and holes across the p-n 

Transportation of holes
Consider a p-type semiconductor 

connected to terminals of a battery as shown. 
When the circuit is switched on, electrons at 
1 and 2 are attracted to the positive terminal 
of the battery and occupy nearby holes at x 
and y. This generates holes at the positions 
1 and 2 previously occupied by electrons. 
Next, electrons at 3 and 4 move towards 
the positive terminal and create holes in the 
positions they occupied previously. 

Finally, the hole is captured at the 
negative terminal by the electron supplied 
by the battery at that end. This keeps the 
density of holes constant and maintains the 
current so long as the battery is working.

Thus, physical transportation is of 
the electrons only. However, we feel that 
the holes are moving towards the negative 
terminal of the battery. Positive charge is 
attracted towards negative terminal. Thus 
holes, which are not actual charges, behave 
like a positive charge. In this case, there is 
an indirect movement of electrons and their 
drift speed is less than that in the n-type 
semiconductors. The mobility of holes is, 
therefore,   less than that of the electrons.

Do you know ?

Solution: 1 ppm = 1 part per million = 1/106

∴ no. of Sb atoms = 4 10

10
4 10

28

6
22�

� �

As one pentavalent impurity atom donates 
one free electron to the crystal,

Number of free electrons in the crystal  
n

e
 = 4 x 1022 m-3

Number of holes,
  

n
h
 =

n

n
i

e

� �2

  = 

                

n
h
 = 3.6 x 109 m-3  
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junction is called diffusion. The extent up to 
which the electrons and the holes can diffuse 
across the junction depends on the density of 
the donor and the acceptor ions on the n-side 
and the p-side respectively, of the junction.  
Figure 14.16 shows the diffusion of charge 
carriers across the junction. 

                                              
Depletion region: The diffusion of carriers 
across the junction and resultant accumulation 
of positive and negative charges across the 
junction builds a potential difference across the 
junction. This potential difference is called the 
potential barrier. The magnitude of the potential 
barrier for silicon is about 0.6 – 0.7 volt and 
for germanium, it is about 0.3 – 0.35 volt. This 
potential barrier always exists even if the device 
is not connected to any external power source. It 
prevents continuous diffusion of carriers across 
the junction.  A state of electrostatic equilibrium 
is thus reached across the junction.     

Free charge carriers cannot be present in 
a region where there is a potential barrier. The 
regions on either side of a junction, therefore, 
becomes completely devoid of any charge 
carriers. This region across the p-n junction 
where there are no charges is called the depletion 
layer or the depletion region. Figure 14.17 
shows the potential barrier and the depletion 
layer. 

          
Fig. 14.17: Potential barrier and the 
depletion layer.

The potential across a junction and width 
of the potential barrier can be controlled. This 
is very interesting and useful property of a p-n 
junction. 

The n-side near the boundary of a p-n 
junction becomes positive with respect to the 
p-side because it has lost electrons and the p-side 
has lost holes. Thus the presence of impurity 
ions on both sides of the junction establishes 
an electric field across this region such that the 
n-side is at a positive voltage relative to the 
p-side. Figure 14.18 shows the electric field 
thus produced. 

Fig. 14.18: Electric field across a junction.

Biasing a p-n junction: As a result of potential 
barrier across depletion region, charge carriers 
require some extra energy to overcome the 
barrier. A suitable voltage needs to be applied 
to the junction externally, so that these charge 
carriers can overcome the potential barrier and 
move across the junction. Figure 14.19 shows 
two possibilities of applying this external 
voltage across the junction. 

Figure 14.19 (a) shows a p-n junction 
connected in an electric circuit where the 
p-region is connected to the positive terminal 
and the n-region is connected to the negative 
terminal of an external voltage source. This 
external voltage effectively opposes the built-in 
potential of the junction. The width of potential 
barrier is thus reduced.  Also, negative charge 
carriers (electrons) from the n-region are 
pushed towards the junction. A similar effect is 
experienced by positive charge carriers (holes) 
in the p-region and they are pushed towards 
the junction. Both the charge carriers thus find 
it easy to cross over the barrier and contribute 
towards the electric current. Such arrangement 
of a p-n junction in an electric circuit is called 
forward bias.    

Figure 14.19 (b) shows the other possibility, 
where, the p-region is connected to the negative 
terminal and the n-region is connected to the 
positive terminal of the external voltage source. 
This external voltage effectively adds to the 

Fig. 14.16: 
Diffusion of 
charge carriers 
across a junction.
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built-in potential of the junction. The width of 
potential barrier is thus increased.  Also, the 
negative charge carriers (electrons) from the 
n-region are pulled away from the junction. 
Similar effect is experienced by the positive 
charge carriers (holes) in the p-region and 
they are pulled away from the junction. Both 
the charge carriers thus find it very difficult to 
cross over the barrier and thus do not contribute 
towards the electric current. Such arrangement 
of a p-n junction in an electric circuit is called 
reverse bias.   

Fig. 14.19: Forward biased (a) and reverse 
biased (b) junction.

Therefore, when used in forward bias 
mode, a p-n junction allows a large current to 
flow across. This current is normally of the 
order of a few milliamperes, (10-3 A). A reverse 
biased p-n junction on the other hand, carries 
a very small current that is normally a few 
microamperes (10-6 A).  

A p-n junction can be thus used as a one 
way switch or a gate in an electric circuit. It 
conducts easily in forward bias and acts as an 
open switch in reverse bias. 

Features of the depletion region: 
 1. It is formed by diffusion of electrons 

from n-region to the p-region. This leaves 
positively charged ions in the n-region. 

 2. The p-region accumulates electrons 
(negative charges) and the n-region 
accumulates the holes (positive charges).  

 3. The accumulation of charges on either sides 
of the junction results in forming a potential 
barrier and prevents flow of charges across 
it.   

 4.   There are no charges in this region.  

 5. The depletion region has higher potential 
on the n-side and lower potential on the 
p-side of the junction.

Fabrication of p-n junction diode: 
It was mentioned previously, for easy 

understanding, that a p-n junction is formed 
by fusing a p-type and a n-type material 
together. However, in practice, a p-n junction 
is formed from a crystalline structure of 
silicon or germanium by adding carefully 
controlled amounts of donor and acceptor 
impurities. 

The impurities grow on either side of the 
crystal after heating in a furnace. Electrons 
and holes combine at the center and the 
depletion region develops. A junction is thus 
formed. Electrodes are inserted after cutting 
transverse sections and hundreds of diodes 
are prepared. All semiconductor devices, 
including ICs, are fabricated by ‘growing’ 
junctions at the required locations.  

Mobility of a hole is less than that of 
an electron and the hole current is lesser. 
This imbalance between the two currents is 
removed by increasing the doping percentage 
in the p-region. This ensures that the same 
current flows through the p-region and the 
n-region of the junction.

Do you know ?

14.7 A p-n junction diode:     

A p-n junction, when provided with 
metallic connectors on each side is called a 
junction diode or simply, a diode. (Diode is a 
device with two electrodes or di-electrodes). 
Figure 14.20 shows the circuit symbol for a 
junction diode.                        

Fig. 14.20: Circuit symbol for a p-n junction 
diode.

(a)

(b)
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The ‘arrow’ indicates the direction of the 
conventional current. The p-side is called the 
anode and the n-side is called the cathode of 
the diode. When a diode is connected across a 
battery, the carriers can gain additional energy 
to cross the barrier as per biasing. 

A diode can be connected across a battery 
in two different ways, forward bias and reverse 
bias as shown in the (Fig. 14.21).

   

Fig. 14.21: (a) Forward bias, (b) Reverse bias.
The behavior of a diode in both cases is 

different. This is because the barrier potential is 
affected differently in the two cases. The barrier 
potential is reduced in forward biased mode and 
it is increased in reverse biased mode. 

Carriers find it easy to cross the junction in 
forward bias and contribute towards current for 
two reasons; first the barrier width is reduced 
and second, they are pushed towards the junction 
and gain extra energy to cross the junction. 
The current through the diode in forward bias 
is, therefore, large. It is of the order of a few 
milliamperes (10-3 A) for a typical diode.   

When connected in reverse bias, width of 
the potential barrier is increased and the carriers 
are pushed away from the junction so that very 
few thermally generated carriers can cross the 
junction and contribute towards current. This 
results in a very small current through a reverse 
biased diode. The current in reverse biased diode 
is of the order of a few microamperes (10-6 A).      

      
Fig. 14.22: Asymmetrical current flow 
through a diode.

The width of the depletion layer decreases 
with an increase in the application of a forward 
voltage. It increases when a reverse voltage is 
applied. We have discussed the reasons for this 
difference earlier. When the polarity of bias 
voltage is reversed, the width of the depletion 
layer changes. This results in asymmetrical 
current flow through a diode as shown in (Fig. 
14.22). 

A diode can be thus used as a one way 
switch in a circuit. It is forward biased when its 
anode is connected to be at a higher potential 
than that of the cathode. When the anode is at 
lower potential than that  of the cathode, it is 
reverse biased. A diode can be zero biased if no 
external voltage is applied across it.
a) Forward biased: The positive terminal 
of the external voltage is connected to  
the anode (p-side) and negative terminal to the 
cathode (n-side) across  the diode.

In case of forward bias, the width of the 
depletion region decreases and the p-n junction 
offers a low resistance path allowing a high 
current to flow across the junction (Fig. 14.23).

Fig. 14.23: Decrease in width of depletion 
region. 

Figure 14.24 shows the I-V characteristic 
of a forward biased diode. Initially, the current 
is very low and then there is a sudden rise in 
the current. The point at which current rises 
sharply is shown as the ‘knee’ point on the I-V 
characteristic curve. The corresponding voltage 
is called the ‘knee voltage’. It is about 0.7 V for 
silicon and 0.3 V for germanium.  

                                                 
Fig. 14.24: I-V characteristic of a forward 
biased diode. 

 (a)     (b) 
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Zero Biased Junction Diode. 
When a diode is connected in a zero 

bias condition, no external potential energy 
is applied to the p-n junction. When the 
diode terminals are shorted together, some 
holes (majority carriers) in the p-side have 
enough thermal energy to overcome the 
potential barrier. Such carriers cross the 
barrier potential and contribute to current. 
This current is known as the forward 
current.  . 

Similarly, some holes generated in the 
n-side (minority carriers), also move across 
the junction in the opposite direction and 
contribute to current. This current is known 
as the reverse current. This transfer of 
electrons and holes back and forth across 
the p-n junction is known as diffusion, as 
discussed previously.

Zero biased p-n junction diode
The potential barrier that exists in a 

junction prevents the diffusion of any more 
majority carriers across it. However, some 
minority carriers (few free electrons in the 
p-region and few holes in the n-region) do 
drift across the junction.

An equilibrium is established when the 
majority carriers are equal in number (n

e
=n

h
) 

and are moving in opposite directions. The 
net current flowing across the junction is zero. 
This is a state of ‘dynamic equilibrium’.

Minority carriers are continuously 
generated due to thermal energy. When the 
temperature of the p-n junction is raised, this 
state of equilibrium is changed. This results 
in generating more minority carriers and an 
increase in the leakage current. An electric 
current, however, cannot flow through the 
diode because it is not connected in any 
electric circuit. 

A diode effectively becomes a short circuit 
above this knee point and can conduct a very 
large current. Resistors are, therefore, used in 
series with diode to limit its current flow. If the 
current through a diode exceeds the specified 
value, it can heat up the diode due to the Joule 
heating and can result in its physical damage. 

b) Reverse biased: The positive terminal 
of the external voltage is connected to  
the cathode (n-side) and negative terminal to 
the anode (p-side) across the diode. In case of 
reverse bias, the width of the depletion region 
increases and the p-n junction behaves like a 
high resistance (Fig. 14.25). Practically, no 
current flows through it with an increase in the 
reverse bias voltage. However, a very small 
leakage current does flow through the junction 
which is of the order of a few micro-amperes,  
( µA ).

Fig. 14.25: Increase in width of depletion 
region.

When the reverse bias voltage applied to 
a diode is increased to sufficiently large value, 
it causes the p-n junction to overheat. The 
overheating of the junction results in a sudden 
rise in the current through the junction. This is 
because the covalent bonds break and a large 
number of carriers are available for conduction.  
The diode, thus, no longer behaves like a diode. 
This effect is called the avalanche breakdown. 
The reverse biased characteristic of a diode is 
shown in Fig 14.26.  

Fig. 14.26: Reverse biased characteristic of 
a diode.
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Example 14.3 Refer to the figure a shown 
below and find the resistance between point A 
and B when an ideal diode is (1) forward biased 
and (2) reverse biased. 

  

(a)

                         

(b)

 

                     

(c)
                                                                                                      

Solution: We know that for an ideal diode, 
the resistance is zero when forward biased and 
infinite when reverse biased.

 i)  Figure b shows the circuit when the diode 
is forward biased. An ideal diode behaves 
as a conductor and the circuit is similar to 
two resistances in parallel. 

     R
AB

 = (30 x 30)/(30+30) = 900/60 = 15 Ω
 ii) Figure c shows the circuit when the 

diode is reverse biased. It does not  
conduct and behaves as an open switch, 
path ACB. Therefore, R

AB
= 30 Ω, the  

only resistance in the circuit along the path 
ADB.  

14.8 Semiconductor devices:
Semiconductor devices find applications in 

variety of fields. They have many advantages. 
They also have some disadvantages. Here we 
discuses some advantages and disadvantages.

14.8.1 Advantages:   

 1. Electronic properties of semiconductors 
can be controlled to suit our requirement. 

 2.  They are smaller in size and light weight.

 3.  They can operate at smaller voltages (of the 
order of few mV) and require less current 
(of the order of µA or mA), therefore, 
consume lesser power. 

 4.  Almost no heating effects occur, therefore 
these devices are thermally stable. 

 5.  Faster speed of operation due to smaller 
size.   

 6.  Fabrication of ICs is possible. 

c) Static and dynamic resistance of a diode: 

One of the most important properties of 
a diode is its resistance in the forward biased 
mode and in the reverse biased mode. Figure 
14.27 shows the I-V characteristics of an ideal 
diode.

An ideal diode offers zero resistance in 
forward biased mode and infinite resistance in 
reverse biased mode. 

Fig. 14.27: I-V characteristics of an ideal diode.

The I-V characteristics of a forward biased 
diode (Fig. 14.24) is used to define two of its 
resistances i) the static (DC) resistance and ii) 
the dynamic (AC) resistance.   

i) Static (DC) resistance: When a p-n junction 
diode is forward biased, it offers a definite 
resistance in the circuit. This resistance is called 
the static or DC resistance (R

g
) of a diode. The 

DC resistance of a diode is the ratio of the 
DC voltage across the diode to the DC current 
flowing through it at a particular voltage.  

 
R

V

Ig =

ii) Dynamic (AC) resistance: The dynamic 
(AC) resistance of a diode, r

g
, at a particular 

applied voltage, is defined as 

r
Ig �

�
�
V

The dynamic resistance of a diode depends 
on the operating voltage. It is the reciprocal of 
the slope of the characteristics at that point. 
Figure 14.28 shows how the DC and the AC 
resistance of a diode are found out.

Fig. 14.28: DC and the AC resistance of a 
diode.
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14.8.2 Disadvantages:   
 1. They are sensitive to electrostatic charges.
 2. Not vary useful for controlling high power.
 3. They are sensitive to radiation.
 4. They are sensitive to fluctuations in 

temperature. 
 5. They need controlled conditions for their 

manufacturing.
 6. Very few matreials are semiconductors. 

14.9 Applications of semiconductors and p-n 
junction diode: 

A p-n junction diode is the basic block 
of a number of semiconductor devices. A 
semiconductor device can have more than one 
junction. Properties of a device can be controlled 
by controlling the concentration of dopants.  

1. Solar cell: Converts light energy into electric 
energy. Useful to produce electricity 
in remote areas and also for providing 
electricity for satellites, space probes and 
space stations. 

2. Photo resistor: Changes its resistance when 
light is incident on it. 

3. Bi-polar junction transistor: These are 
devices with two junctions and three 
terminals. A transistor can be a p-n-p or 
n-p-n transistor. Conduction takes place 
with holes and electrons. Many other types 
of transistors are designed and fabricated to 
suit specific requirements. They are used in 
almost all semiconductor devices.

4. Photodiode: It conducts when illuminated 
with light. 

5.  LED: Light Emitting Diode: Emits light 
when current passes through it. House hold 
LED lamps use similar technology. They 
consume less power, are smaller in size and 
have a longer life and are cost effective. 

6. Solid State Laser: It is a special type of 
LED. It emits light of specific frequency. It 
is smaller in size and consumes less power.

 7. Integrated Circuits (ICs): A small device 
having hundreds of diodes and transistors 
performs the work of a large number of 
electronic circuits.

14.10 Thermistor:
Thermistor is a temperature sensitive 

resistor. Its resistance changes with change in its 
temperature. There are two types of thermistors, 

the Negative Temperature Coefficient (NTC) 
and the Positive Temperature Coefficient (PTC). 

Resistance of a NTC thermistor decreases 
with increase in its temperature. Its temperature 
coefficient is negative. They are commonly used 
as temperature sensors and also in temperature 
control circuits. 

Resistance of a PTC thermistor increases 
with increase in its temperature. They are 
commonly used in series with a circuit. They are 
generally used as a reusable fuse to limit current 
passing through a circuit to protect against over 
current conditions, as resettable fuses. 

Thermistors are made from thermally 
sensitive metal oxide semiconductors. 
Thermistors are very sensitive to changes in 
temperature. A small change in surrounding 
temperature causes a large change in their 
resistance. They can measure temperature 
variations of a small area due to their small 
size. Both types of thermistors have many 
applications in industry.

Do you know ?

Electric and electronic devices

Electric devices: These devices convert 
electrical energy into some other form. 
Fan, refrigerator, geyser etc. are some 
examples.  Fan converts electrical energy 
into mechanical energy. A geyser converts it 
into heat energy. They use good conductors 
(mostly metals) for conduction of electricity. 
Common working range of currents for 
electric circuits is milli ampers (mA)  to 
amperes. Their energy consumption is also 
moderate to high.  A typical geyser consumes 
about 2.0 to 2.50 kW of power.    They are 
moderate to large in size and are costly. 

Electronic devices: Electronic circuits work 
with control or sequential changes in current 
through a cell. A calculator, a cell phone 
a smart watch or the remote control of a 
TV  set are some of the electronic devices. 
Semiconductors are used to fabricate such 
devices. Common working range of currents 
for electronic circuits it is nano-ampere to 
µA. They consume very low energy. They 
are very compact, and cost effective.
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 1. https://www.electronics-tutorials.ws>diode     2. https://www.hitachi-hightech.com
 3. https://ntpel.ac.in>courses                                4. https://physics.info>semiconductors 
 5. https://www.hyperphysics.phy-astr.gsu.edu>semcn

Internet my friend

Exercises Exercises

1. Choose the correct option.

 i) Electric conduction through a 
semiconductor is due to: 

  (A) electrons    

  (B) holes  

  (C) none of these  

  (D) both electrons and holes

 ii)  The energy levels of holes are: 

  (A) in the valence band   

  (B) in the conduction band   

  (C) in the band gap but close to valence 

              band 

  (D) in the band gap but close to conduction 
band  

 iii) Current through a reverse biased p-n 
junction, increases abruptly at:

  (A) breakdown voltage   (B) 0.0 V  

  (C) 0.3V     (D) 0.7V

 iv) A reverse biased diode, is equivalent to: 

  (A) an off switch        

  (B) an on switch 

  (C) a low resistance    

  (D) none of the above

 v)  The potential barrier in p-n diode is due to:

  (A) depletion of positive charges near the 
junction

  (B) accumulation of positive charges near 
the junction

  (C) depletion of negative charges near the 
junction,

  (D) accumulation of positive and negative 
charges near the junction

2. Answer the following questions.

 i)  What is the importance of energy gap in a 
semiconductor? 

 ii) Which element would you use as an 
impurity to make germanium an n-type 
semiconductor?

 iii) What causes a larger current through a p-n 
junction diode when forward biased? 

 iv) On which factors does the electrical 
conductivity of a pure semiconductor 
depend at a given temperature?

 v) Why is the conductivity of a n-type 
semiconductor greater than that of p-type 
semiconductor even when both of these 
have same level of doping? 

 3. Answer in detail.

 i) Explain how solids are classified on the 
basis of band theory of solids. 

 ii) Distinguish between intrinsic 
semiconductors and extrinsic 
semiconductors. 

 iii) Explain the importance of the depletion 
region in a p-n junction diode. 

 iv) Explain the I-V characteristic of a forward 
biased junction diode. 

 v)  Discuss the effect of external voltage on the 
width of depletion region of a p-n junction

***
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